• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

The nonlinear Schrödinger equation for orthonormal functions: II. Application to Lieb-Thirring inequalities

Frank, Rupert L.; Gontier, David; Lewin, Mathieu (2020), The nonlinear Schrödinger equation for orthonormal functions: II. Application to Lieb-Thirring inequalities. https://basepub.dauphine.fr/handle/123456789/21165

View/Open
2002.04964.pdf (485.9Kb)
Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-02477148
Date
2020
Series title
Cahier de recherche CEREMADE
Pages
43
Metadata
Show full item record
Author(s)
Frank, Rupert L.
Department of Mathematics (Caltech)
Gontier, David cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Lewin, Mathieu cc
Abstract (EN)
We prove that the best Lieb-Thirring constant when the eigenvalues of a Schrödinger operator −Δ+V(x) are raised to the power κ≥1 (κ≥3/2 in 1D and κ>1 in 2D) can never be attained for a potential having finitely many eigenvalues. We thereby disprove a conjecture of Lieb and Thirring in 2D that the best constant is given by the one-bound state case for 1<κ≲1.165. In a different but related direction, we also show that the cubic nonlinear Schrödinger equation admits no orthonormal ground state in 1D, for more than one function.
Subjects / Keywords
Lieb-Thirring; Schrödinger equation

Related items

Showing items related by title and author.

  • Thumbnail
    The Nonlinear Schrödinger Equation for Orthonormal Functions II: Application to Lieb–Thirring Inequalities 
    Frank, Rupert L.; Gontier, David; Lewin, Mathieu (2021) Article accepté pour publication ou publié
  • Thumbnail
    Optimizers for the finite-rank Lieb-Thirring inequality 
    Frank, Rupert L.; Gontier, David; Lewin, Mathieu (2021) Document de travail / Working paper
  • Thumbnail
    The Nonlinear Schrödinger Equation for Orthonormal Functions : Existence of Ground States 
    Gontier, David; Lewin, Mathieu; Nazar, Faizan Q. (2021) Article accepté pour publication ou publié
  • Thumbnail
    The nonlinear Schr\odinger equation for orthonormal functions: I. Existence of ground states" 
    Gontier, David; Lewin, Mathieu; Nazar, Faizan Q.; Abbad, Narima (2021) Article accepté pour publication ou publié
  • Thumbnail
    The Physics and Mathematics of Elliott Lieb 
    Frank, Rupert; Laptev, Ari; Lewin, Mathieu; Seiringer, Robert (2022) Ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo