Fréchet Mean Computation in Graph Space through Projected Block Gradient Descent
Boria, Nicolas; Negrevergne, Benjamin; Yger, Florian (2020), Fréchet Mean Computation in Graph Space through Projected Block Gradient Descent, 28th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2020), 2020-10, Bruges, FRANCE
Type
Communication / ConférenceExternal document link
https://hal-normandie-univ.archives-ouvertes.fr/hal-02895832Date
2020Conference title
28th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2020)Conference date
2020-10Conference city
BrugesConference country
FRANCEMetadata
Show full item recordAbstract (EN)
A fundamental concept in statistics is the concept of Fréchet sample mean. While its computation is a simple task in Euclidian space, the same does not hold for less structured spaces such as the space of graphs, where concepts of distance or mid-point can be hard to compute. We present some work in progress regarding new distance measures and new algorithms to compute the Fréchet mean in the space of Graphs.Subjects / Keywords
Graph spaceRelated items
Showing items related by title and author.
-
Lecoutre, Adrian; Negrevergne, Benjamin; Yger, Florian (2017) Communication / Conférence
-
Cazenave, Tristan; Negrevergne, Benjamin; Sikora, Florian (2020) Communication / Conférence
-
Cazenave, Tristan; Negrevergne, Benjamin; Sikora, Florian (2020) Communication / Conférence
-
Kumar, Satyam; Yger, Florian; Lotte, Fabien (2019) Communication / Conférence
-
Yger, Florian; Berar, Maxime; Lotte, Fabien (2017) Article accepté pour publication ou publié