
Weak KAM approach to first-order Mean Field Games with state constraints
Cannarsa, Piermarco; Cheng, Wei; Mendico, Cristian; Wang, Kaizhi (2021), Weak KAM approach to first-order Mean Field Games with state constraints, Journal of Dynamics and Differential Equations, p. 33. 10.1007/s10884-021-10071-9
View/ Open
Type
Article accepté pour publication ou publiéDate
2021Journal name
Journal of Dynamics and Differential EquationsPublisher
Springer
Pages
33
Publication identifier
Metadata
Show full item recordAuthor(s)
Cannarsa, PiermarcoDipartimento di Matematica [Roma II] [DIPMAT]
Cheng, Wei
Mendico, Cristian
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Wang, Kaizhi
Abstract (EN)
We study the asymptotic behavior of solutions to the constrained MFG system as the time horizon T goes to infinity. For this purpose, we analyze first Hamilton-Jacobi equations with state constraints from the viewpoint of weak KAM theory, constructing a Mather measure for the associated variational problem. Using these results, we show that a solution to the constrained ergodic mean field games system exists and the ergodic constant is unique. Finally, we prove that any solution of the first-order constrained MFG problem on [0,T] converges to the solution of the ergodic system as T→+∞.Subjects / Keywords
Weak KAM theory; Mean Field Games; State constraints; Semiconcave functions; Long-time behavior of solutionsRelated items
Showing items related by title and author.
-
Cannarsa, Piermarco; Mendico, Cristian (2020) Article accepté pour publication ou publié
-
Mendico, Cristian (2021-11-05) Thèse
-
Cannarsa, Piermarco; Capuani, Rossana; Cardaliaguet, Pierre (2021) Article accepté pour publication ou publié
-
Cardaliaguet, Pierre (2013) Article accepté pour publication ou publié
-
Cardaliaguet, Pierre (2015) Chapitre d'ouvrage