Weighted coloring: further complexity and approximability results
dc.contributor.author | Paschos, Vangelis | |
dc.contributor.author | Escoffier, Bruno
HAL ID: 5124 | |
dc.contributor.author | Monnot, Jérôme
HAL ID: 178759 ORCID: 0000-0002-7452-6553 | |
dc.date.accessioned | 2009-10-06T11:55:26Z | |
dc.date.available | 2009-10-06T11:55:26Z | |
dc.date.issued | 2006 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/2128 | |
dc.language.iso | en | en |
dc.subject | Partial k-tree | en |
dc.subject | Line graph of bipartite graphs | en |
dc.subject | Interval graphs | en |
dc.subject | Weighted coloring | en |
dc.subject | NP-Complete problems | en |
dc.subject | Approximation algorithms | en |
dc.subject.ddc | 003 | en |
dc.title | Weighted coloring: further complexity and approximability results | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | Given a vertex-weighted graph G = (V,E;w), w(v) ≥ 0 for any v ∈ V, we consider a weighted version of the coloring problem which consists in finding a partition S=(S1...,Sk)=(S1Sk) of the vertex set V of G into stable sets and minimizing ∑ i = 1 k w(S i ) where the weight of S is defined as max{w(v) : v ∈ S}. In this paper, we keep on with the investigation of the complexity and the approximability of this problem by mainly answering one of the questions raised by D. J. Guan and X. Zhu (”A Coloring Problem for Weighted Graphs”, Inf. Process. Lett. 61(2):77-81 1997). | |
dc.relation.isversionofjnlname | Information Processing Letters | |
dc.relation.isversionofjnlvol | 97 | en |
dc.relation.isversionofjnlissue | 3 | en |
dc.relation.isversionofjnldate | 2006 | |
dc.relation.isversionofjnlpages | 98-103 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1016/j.ipl.2005.09.013 | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Elsevier | en |
dc.subject.ddclabel | Recherche opérationnelle | en |