Show simple item record

hal.structure.identifierLaboratoire des Sciences du Numérique de Nantes [LS2N]
dc.contributor.authorPirogov, Aleksandr
hal.structure.identifierLaboratoire des Sciences du Numérique de Nantes [LS2N]
dc.contributor.authorGurevsky, Evgeny
HAL ID: 4061
hal.structure.identifierLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
dc.contributor.authorRossi, André
HAL ID: 1694
hal.structure.identifierLaboratoire des Sciences du Numérique de Nantes [LS2N]
dc.contributor.authorDolgui, Alexandre
HAL ID: 8541
ORCID: 0000-0003-0527-4716
dc.date.accessioned2021-01-08T10:36:10Z
dc.date.available2021-01-08T10:36:10Z
dc.date.issued2019
dc.identifier.issn0377-2217
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/21421
dc.language.isoenen
dc.subjectTransfer lineen
dc.subjectBalancingen
dc.subjectStability radiusen
dc.subjectRobustnessen
dc.subjectUncertaintyen
dc.subjectRobust optimizationen
dc.subjectMILPen
dc.subjectHeuristicsen
dc.subjectPre-processingen
dc.subjectManufacturingen
dc.subject.ddc658.5en
dc.titleRobust balancing of transfer lines with blocks of uncertain parallel tasks under fixed cycle time and space restrictionsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenThis paper deals with an optimization problem, which arises when a new transfer line has to be designed subject to a limited number of available machines, cycle time constraint, and precedence relations between necessary production tasks. The studied problem consists in assigning a given set of tasks to blocks and then blocks to machines so as to find the most robust line configuration under task processing time uncertainty. The robustness of a given line configuration is measured via its stability radius , i.e. , as the maximal amplitude of deviations from the nominal value of the processing time of uncertain tasks that do not violate the solution admissibility. In this work, for considering different hypotheses on uncertainty, the stability radius is based upon the Manhattan and Chebyshev norms. For each norm, the problem is proven to be strongly NP-hard and a mixed-integer linear program (MILP) is proposed for addressing it. To accelerate the seeking of optimal solutions, two variants of a heuristic method as well as several reduction rules are devised for the corresponding MILP. Computational results are reported on a collection of instances derived from classic benchmark data used in the literature for the Transfer Line Balancing Problem.en
dc.relation.isversionofjnlnameEuropean Journal of Operational Research
dc.relation.isversionofjnlvol290en
dc.relation.isversionofjnlissue3en
dc.relation.isversionofjnldate2021-05
dc.relation.isversionofjnlpages946-955en
dc.relation.isversionofdoi10.1016/j.ejor.2020.08.038en
dc.relation.isversionofjnlpublisherElsevieren
dc.subject.ddclabelGestion de productionen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenonen
dc.description.halcandidateouien
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewedouien
dc.relation.Isversionofjnlpeerreviewedouien
dc.date.updated2021-01-08T10:27:02Z
hal.faultCode{"duplicate-entry":{"hal-03003764":{"doi":"1.0"}}}
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record