• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Estimating Individual Treatment Effects throughCausal Populations Identification

Beji, Céline; Benhamou, Éric; Bon, Michaël; Yger, Florian; Atif, Jamal (2020), Estimating Individual Treatment Effects throughCausal Populations Identification, 28th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2020), 2020-10, Brugges, Belgium

View/Open
ES2020-110.pdf (1.527Mb)
Type
Communication / Conférence
Date
2020
Conference title
28th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2020)
Conference date
2020-10
Conference city
Brugges
Conference country
Belgium
Metadata
Show full item record
Author(s)
Beji, Céline
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Benhamou, Éric
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Bon, Michaël
autre
Yger, Florian cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Atif, Jamal
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
Estimating the Individual Treatment Effect from observational data, defined as the difference between outcomes with and without treatment or intervention, while observing just one of both, is a challenging problems in causal learning. In this paper, we formulate this problem as an inference from hidden variables and enforce causal constraints based on a model of four exclusive causal populations. We propose a new version of the EM algorithm, coined as Expected-Causality-Maximization (ECM) algorithm and provide hints on its convergence under mild conditions. We compare our algorithm to baseline methods on synthetic and real-world data and discuss its performances.
Subjects / Keywords
Machine Learning

Related items

Showing items related by title and author.

  • Thumbnail
    Causal Populations Identification througth Hidden Distributions Estimation 
    Beji, Celine (2021-10-28) Thèse
  • Thumbnail
    Theoretical evidence for adversarial robustness through randomization 
    Pinot, Rafaël; Meunier, Laurent; Araújo, Alexandre; Kashima, Hisashi; Yger, Florian; Gouy-Pailler, Cedric; Atif, Jamal (2019) Communication / Conférence
  • Thumbnail
    Theoretical evidence for adversarial robustness through randomization 
    Pinot, Rafaël; Meunier, Laurent; Araújo, Alexandre; Kashima, Hisashi; Yger, Florian; Gouy-Pailler, Cedric; Atif, Jamal (2019) Communication / Conférence
  • Thumbnail
    Graph-based Clustering under Differential Privacy 
    Pinot, Rafael; Morvan, Anne; Yger, Florian; Gouy-Pailler, Cédric; Atif, Jamal (2018) Communication / Conférence
  • Thumbnail
    Uplift Modeling from Separate Labels 
    Yamane, Ikko; Yger, Florian; Atif, Jamal; Sugiyama, Masashi (2018) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo