Dynamics of a Fleming–Viot type particle system on the cycle graph
Corujo, Josué (2021), Dynamics of a Fleming–Viot type particle system on the cycle graph, Stochastic Processes and their Applications, 136, p. 57-91. 10.1016/j.spa.2021.02.001
Type
Article accepté pour publication ou publiéExternal document link
https://hal.archives-ouvertes.fr/hal-02447747v2Date
2021-01Journal name
Stochastic Processes and their ApplicationsVolume
136Publisher
Elsevier
Pages
57-91
Publication identifier
Metadata
Show full item recordAuthor(s)
Corujo, Josué
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Institut de Mathématiques de Toulouse UMR5219 [IMT]
Abstract (EN)
We study the Fleming–Viot particle process formed by interacting continuous-time asymmetric random walks on the cycle graph, with uniform killing. We show that this model has a remarkable exact solvability, despite the fact that it is non-reversible with non-explicit invariant distribution. Our main results include quantitative propagation of chaos and exponential ergodicity with explicit constants, as well as formulas for covariances at equilibrium in terms of the Chebyshev polynomials. We also obtain a bound uniform in time for the convergence of the proportion of particles in each state when the number of particles goes to infinity.Subjects / Keywords
Quasi-stationary distribution; Fleming–Viot type particle system; Moran type model; Propagation of chaos; ErgodicityRelated items
Showing items related by title and author.
-
Corujo, Josué (2021) Document de travail / Working paper
-
Corujo, Josué; Valdés, José E. (2021) Article accepté pour publication ou publié
-
Homogenization of some particle systems with two-body interactions and of the dislocation dynamics Forcadel, Nicolas; Imbert, Cyril; Monneau, Régis (2009) Article accepté pour publication ou publié
-
Cloez, Bertrand; Corujo, Josué (2022) Article accepté pour publication ou publié
-
Cloez, Bertrand; Corujo, Josue (2022) Article accepté pour publication ou publié