• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Trust-Region Newton-CG with Strong Second-Order Complexity Guarantees for Nonconvex Optimization

Curtis, F. E.; Robinson, D. P.; Royer, Clément; Wright, S. J. (2019), Trust-Region Newton-CG with Strong Second-Order Complexity Guarantees for Nonconvex Optimization, SIAM Journal on Optimization, 31, 1, p. 518-544. 10.1137/19M130563X

View/Open
Trust-Region.pdf (947.1Kb)
Type
Article accepté pour publication ou publié
Date
2019
Journal name
SIAM Journal on Optimization
Volume
31
Number
1
Publisher
SIAM - Society for Industrial and Applied Mathematics
Pages
518-544
Publication identifier
10.1137/19M130563X
Metadata
Show full item record
Author(s)
Curtis, F. E.

Robinson, D. P.

Royer, Clément cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Wright, S. J.
Abstract (EN)
Worst-case complexity guarantees for nonconvex optimization algorithms have been a topic of growing interest. Multiple frameworks that achieve the best known complexity bounds among a broad class of first- and second-order strategies have been proposed. These methods have often been designed primarily with complexity guarantees in mind and, as a result, represent a departure from the algorithms that have proved to be the most effective in practice. In this paper, we consider trust-region Newton methods, one of the most popular classes of algorithms for solving nonconvex optimization problems. By introducing slight modifications to the original scheme, we obtain two methods---one based on exact subproblem solves and one exploiting inexact subproblem solves as in the popular “trust-region Newton-conjugate gradient” (trust-region Newton-CG) method---with iteration and operation complexity bounds that match the best known bounds for the aforementioned class of first- and second-order methods. The resulting trust-region Newton-CG method also retains the attractive practical behavior of classical trust-region Newton-CG, which we demonstrate with numerical comparisons on a standard benchmark test set.
Subjects / Keywords
smooth nonconvex optimization; trust-region methods; Newton's method; conjugate gradient method; Lanczos method; worst-case complexity; negative curvature

Related items

Showing items related by title and author.

  • Thumbnail
    A nonlinear conjugate gradient method with complexity guarantees and its application to nonconvex regression 
    Chan-Renous-Legoubin, Rémi; Royer, Clément W. (2022) Article accepté pour publication ou publié
  • Thumbnail
    Corrigendum for "Second-order reflected backward stochastic differential equations" and "Second-order BSDEs with general reflection and game options under uncertainty" 
    Matoussi, Anis; Possamaï, Dylan; Zhou, Chao (2021) Article accepté pour publication ou publié
  • Thumbnail
    Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. III. Uniqueness of viscosity solutions for general second-order equations 
    Lions, Pierre-Louis (1989) Article accepté pour publication ou publié
  • Thumbnail
    Second-order BSDEs with general reflection and game options under uncertainty 
    Possamaï, Dylan; Piozin, Lambert; Matoussi, Anis (2014) Article accepté pour publication ou publié
  • Thumbnail
    Extension to Infinite Dimensions of a Stochastic Second-Order Model associated with the Shape Splines 
    Vialard, François-Xavier (2013) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo