Show simple item record

New robust and probabilistic models for shelter location in forest fire context

dc.contributor.advisorMurat, Cécile
dc.contributor.advisorDemange, Marc
dc.contributor.authorHaddad, Marcel Adonis
dc.date.accessioned2021-06-17T13:48:04Z
dc.date.available2021-06-17T13:48:04Z
dc.date.issued2020-12-14
dc.identifier.urihttps://basepub.dauphine.psl.eu/handle/123456789/21705
dc.description.abstractfrA cause du réchauffement climatique, le nombre et l’intensité des feux de forêts augmentent autour du globe. Dansce contexte, la construction de refuges contre le feu est une solution de plus en plus envisagée. Le problème consisteessentiellement à localiser p refuges de sorte à minimiser la distance maximale qui sépare un usager du plus procherefuge accessible en cas de feux. Le territoire considéré est divisé en zones et est modélisé comme un graphe auxarêtes pondérées. Un départ de feux sur une seule zone (c’est-à-dire sur un sommet). La principale conséquence d’unfeu est que les chemins d’évacuation sont modifiés de deux manières. Premièrement, un chemin d’évacuation ne peutpas traverser le sommet en feu. Deuxièmement, le fait qu’une personne proche de l’incendie puisse avoir un choix limitéde direction d’évacuation, ou être sous stress, est modélisé à l’aide d’une stratégie d’évacuation nouvellement définie.Cette stratégie d’évacuation induit des distances d’évacuation particulières qui rendent notre modèle spécifique. Selon letype de données considéré et l’objectif recherché, nous proposons deux problèmes avec ce modèle: le Robust p-CenterUnder Pressure et le Probabilistic p-Center Under Pressure. Nous prouvons que ces deux problèmes sont NP-difficilessur des classes de graphes pertinentes pour notre contexte. Nous proposons également des résultats d’approximationet d’inapproximation. Finalement, nous développons des algorithmes polynomiaux sur des classes de graphes simples,et nous développons des algorithmes mathématiques basés sur la programmation linéaire.fr
dc.language.isoen
dc.subjectGestion des situations d'urgencefr
dc.subjectFeux de forêtfr
dc.subjectLocalisation des abris sous incertitudefr
dc.subjectVariantes du problème du p-Centrefr
dc.subjectOptimisation Combinatoire Robuste et Probabilistefr
dc.subjectProgrammation linéaire en nombres entiersfr
dc.subjectStratégie d’évacuationfr
dc.subjectOptimisation probabilistefr
dc.subjectForest fire emergencyen
dc.subjectShelter location under uncertaintyen
dc.subjectVariants of the p-Center problemen
dc.subjectInteger linear programmingen
dc.subjectWildfire emergencyen
dc.subjectProbabilistic Optimizationen
dc.subjectRobust Combinatorial Optimizationen
dc.subjectUnder pressure decision modelen
dc.subjectEvacuation strategyen
dc.subject.ddc003
dc.titleNouveaux modèles robustes et probabilistes pour la localisation d'abris dans un contexte de feux de forêtfr
dc.titleNew robust and probabilistic models for shelter location in forest fire contexten
dc.typeThèse
dc.contributor.editoruniversityotherUniversité Paris sciences et lettres
dc.description.abstractenThe location of shelters in different areas threatened by wildfires is one of the possible ways to reduce fatalities in acontext of an increasing number of catastrophic and severe forest fires. The problem is basically to locate p sheltersminimizing the maximum distance people will have to cover to reach the closest accessible shelter in case of fire. Thelandscape is divided in zones and is modeled as an edge-weighted graph with vertices corresponding to zones andedges corresponding to direct connections between two adjacent zones. Each scenario corresponds to a fire outbreak ona single zone (i.e., on a vertex) with the main consequence of modifying evacuation paths in two ways. First, an evacuationpath cannot pass through the vertex on fire. Second, the fact that someone close to the fire may have limited choice, ormay not take rational decisions, when selecting a direction to escape is modeled using a new kind of evacuation strategy.This evacuation strategy, called Under Pressure, induces particular evacuation distances which render our model specific.We propose two problems with this model: the Robust p-Center Under Pressure problem and the Probabilistic p-CenterUnder Pressure problem. First we prove hardness results for both problems on relevant classes of graphs for our context.In addition, we propose polynomial exact algorithms on simple classes of graphs and we develop mathematical algorithmsbased on integer linear programming.en
dc.identifier.theseid2020UPSLD021
dc.contributor.countryeditoruniversityotherRMIT University (Melbourne)
dc.subject.ddclabelRecherche opérationnelle
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record