• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Point Source Regularization of the Finite Source Reflector Problem

Benamou, Jean-David; Chazareix, Guillaume; Ijzerman, Wilbert; Rukhaia, Giorgi (2022), Point Source Regularization of the Finite Source Reflector Problem, Journal of Computational Physics, 456. 10.1016/j.jcp.2022.111032

View/Open
ExtendedSourceReflectorSubmission.pdf (1.969Mb)
Type
Article accepté pour publication ou publié
Date
2022
Journal name
Journal of Computational Physics
Number
456
Publisher
Elsevier
Publication identifier
10.1016/j.jcp.2022.111032
Metadata
Show full item record
Author(s)
Benamou, Jean-David
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Chazareix, Guillaume
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Ijzerman, Wilbert
High Tech Campus Eindhoven
Rukhaia, Giorgi
Inria de Paris
Abstract (EN)
We address the “freeform optics” inverse problem of designing a reflector surface mapping a prescribed source distribution of light to a prescribed far field distribution, for a finite light source. When the finite source reduces to a point source, the light source distribution has support only on the optics ray directions. In this setting the inverse problem is well posed for arbitrary source and target probability distributions. It can be recast as an Optimal Transportation problem and has been studied both mathematically and nu-merically. We are not aware of any similar mathematical formulation in the finite source case: i.e. the source has an “´etendue” with support both in space and directions. We propose to leverage the well-posed variational formulation of the point source problem to build a smooth parameterization of the reflec-tor and the reflection map. Under this parameterization we can construct a smooth loss/misfit function to optimize for the best solution in this class of reflectors. Both steps, the parameterization and the loss, are related to Optimal Transportation distances. We also take advantage of recent progress in the numerical approximation and resolution of these mathematical objects to perform a numerical study.
Subjects / Keywords
Inverse reflector problem; Optimal transportation; Non-linear optimization

Related items

Showing items related by title and author.

  • Thumbnail
    An Entropic Optimal Transport Numerical Approach to the Reflector Problem 
    Benamou, Jean-David; Ijzerman, Wilbert; Rukhaia, Giorgi (2020) Article accepté pour publication ou publié
  • Thumbnail
    Minimal convex extensions and finite difference discretisation of the quadratic Monge–Kantorovich problem 
    Duval, Vincent; Benamou, Jean-David (2018) Article accepté pour publication ou publié
  • Thumbnail
    Discretization of functionals involving the Monge-Ampère operator 
    Benamou, Jean-David; Carlier, Guillaume; Mérigot, Quentin; Oudet, Edouard (2016) Article accepté pour publication ou publié
  • Thumbnail
    Iterative Bregman Projections for Regularized Transportation Problems 
    Benamou, Jean-David; Carlier, Guillaume; Cuturi, Marco; Nenna, Luca; Peyré, Gabriel (2015) Article accepté pour publication ou publié
  • Thumbnail
    A numerical solution to Monge's problem with a Finsler distance as cost 
    Benamou, Jean-David; Carlier, Guillaume; Hatchi, Roméo (2018) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo