• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Optimal linearization of vector fields on the torus in non-analytic Gevrey classes

Bounemoura, Abed (2022), Optimal linearization of vector fields on the torus in non-analytic Gevrey classes, Annales de l'Institut Henri Poincaré (C) Analyse non linéaire, 39, 3, p. 501–528. 10.4171/AIHPC/12

View/Open
opti.pdf (284.2Kb)
Type
Article accepté pour publication ou publié
Date
2022
Journal name
Annales de l'Institut Henri Poincaré (C) Analyse non linéaire
Volume
39
Number
3
Publisher
Elsevier
Published in
Paris
Pages
501–528
Publication identifier
10.4171/AIHPC/12
Metadata
Show full item record
Author(s)
Bounemoura, Abed
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We study linear and non-linear small divisors problems in analytic and non-analytic regularity. We observe that the Bruno arithmetic condition, which is usually attached to non-linear analytic problems, can also be characterized as the optimal condition to solve the linear problem in some fixed non quasi-analytic class. Based on this observation, it is natural to conjecture that the optimal arithmetic condition for the linear problem is also optimal for non-linear small divisors problems in any reasonable non quasi-analytic classes. Our main result proves this conjecture in a representative non-linear problem, which is the linearization of vector fields on the torus, in the most representative non quasi-analytic class, which is the Gevrey class. The proof follows Moser's argument of approximation by analytic functions, and uses in an essential way works of Popov, Rüssmann and Pöschel..
Subjects / Keywords
Gevrey classes

Related items

Showing items related by title and author.

  • Thumbnail
    KAM, α -Gevrey regularity and the α -Bruno-Rüssmann condition 
    Bounemoura, Abed; Féjoz, Jacques (2017-06) Article accepté pour publication ou publié
  • Thumbnail
    Positive measure of effective quasi-periodic motion near a Diophantine torus 
    Bounemoura, Abed; Farré, Gerard (2021) Document de travail / Working paper
  • Thumbnail
    Generic Fast Diffusion for a Class of Non-Convex Hamiltonians with Two Degrees of Freedom 
    Bounemoura, Abed; Kaloshin, Vadim (2014) Article accepté pour publication ou publié
  • Thumbnail
    Nekhoroshev estimates for steep real-analytic elliptic equilibrium points 
    Bounemoura, Abed; Fayad, Bassam; Niederman, Laurent (2019) Article accepté pour publication ou publié
  • Thumbnail
    Super-exponential stability for generic real-analytic elliptic equilibrium points 
    Bounemoura, Abed; Fayad, Bassam; Niederman, Laurent (2020) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo