Spatially-Varying Metric Learning for Diffeomorphic Image Registration: A Variational Framework
hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Vialard, François-Xavier | |
hal.structure.identifier | Institut de Mathématiques de Toulouse UMR5219 [IMT] | |
dc.contributor.author | Risser, Laurent
HAL ID: 17551 | |
dc.date.accessioned | 2021-11-03T10:34:28Z | |
dc.date.available | 2021-11-03T10:34:28Z | |
dc.date.issued | 2014 | |
dc.identifier.uri | https://basepub.dauphine.psl.eu/handle/123456789/22158 | |
dc.language.iso | en | en |
dc.subject | Image Registration | en |
dc.subject | Dimensionality Reduction Method | en |
dc.subject | Grid Step Size | en |
dc.subject | Simple Gradient Descent | en |
dc.subject | Target Overlap | en |
dc.subject.ddc | 510 | en |
dc.title | Spatially-Varying Metric Learning for Diffeomorphic Image Registration: A Variational Framework | en |
dc.type | Communication / Conférence | |
dc.description.abstracten | This paper introduces a variational strategy to learn spatially-varying metrics on large groups of images, in the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework. Spatially-varying metrics we learn not only favor local deformations but also correlated deformations in different image regions and in different directions. In addition, metric parameters can be efficiently estimated using a gradient descent method. We first describe the general strategy and then show how to use it on 3D medical images with reasonable computational ressources. Our method is assessed on the 3D brain images of the LPBA40 dataset. Results are compared with ANTS-SyN and LDDMM with spatially-homogeneous metrics. | en |
dc.identifier.citationpages | 227-234 | en |
dc.relation.ispartoftitle | International Conference on Medical Image Computing and Computer-Assisted Intervention: MICCAI 2014 | en |
dc.relation.ispartofpublname | Springer | en |
dc.relation.ispartofpublcity | Berlin Heidelberg | en |
dc.relation.ispartofdate | 2014 | |
dc.relation.ispartofpages | 826 | en |
dc.relation.ispartofurl | 10.1007/978-3-319-10404-1 | en |
dc.subject.ddclabel | Mathématiques | en |
dc.relation.ispartofisbn | 978-3-319-10403-4 | en |
dc.relation.conftitle | Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014 17th International Conference | en |
dc.relation.confdate | 2014-09 | |
dc.relation.confcity | Boston | en |
dc.relation.confcountry | United States | en |
dc.relation.forthcoming | non | en |
dc.identifier.doi | 10.1007/978-3-319-10404-1_29 | en |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.relation.Isversionofjnlpeerreviewed | non | en |
dc.date.updated | 2021-11-03T10:29:23Z | |
hal.author.function | aut | |
hal.author.function | aut |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |