• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Multiple front standing waves in the FitzHugh-Nagumo equations

Chen, Chao-Nien; Séré, Eric (2021), Multiple front standing waves in the FitzHugh-Nagumo equations, Journal of Differential Equations, 302, p. 895-925. 10.1016/j.jde.2021.08.005

View/Open
multi-front_v3.pdf (584.2Kb)
Type
Article accepté pour publication ou publié
Date
2021
Journal name
Journal of Differential Equations
Volume
302
Publisher
Elsevier
Pages
895-925
Publication identifier
10.1016/j.jde.2021.08.005
Metadata
Show full item record
Author(s)
Chen, Chao-Nien
National Tsing Hua University [Hsinchu] [NTHU]
Séré, Eric
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
There have been several existence results for the standing waves of FitzHugh-Nagumo equations. Such waves are the connecting orbits of an autonomous second-order Lagrangian system and the corresponding kinetic energy is an indefinite quadratic form in the velocity terms. When the system has two stable hyperbolic equilibria, there exist two stable standing fronts, which will be used in this paper as building blocks, to construct stable standing waves with multiple fronts in case the equilibria are of saddle-focus type. The idea to prove existence is somewhat close in spirit to [Buffoni-Sere, CPAM 49, 285-305]. However several differences are required in the argument: facing a strongly indefinite functional, we need to perform a nonlo-cal Lyapunov-Schmidt reduction; in order to justify the stability of multiple front standing waves, we rely on a more precise variational characterization of such critical points. Based on this approach, both stable and unstable standing waves are found.
Subjects / Keywords
Heteroclinic connection; Hamiltonian system; Stability; Reaction-diffusion system; FitzHugh-Nagumo equations; Standing wave; Multibump solution; Variational approach; Lyapunov-Schmidt reduction

Related items

Showing items related by title and author.

  • Thumbnail
    An overview on the standing waves of nonlinear Schroedinger and Dirac equations on metric graphs with localized nonlinearity 
    Borrelli, William; Carlone, Raffaele; Tentarelli, Lorenzo (2019) Document de travail / Working paper
  • Thumbnail
    On the asymptotic stability of small nonlinear Dirac standing waves in a resonant case 
    Boussaid, Nabile (2008) Article accepté pour publication ou publié
  • Thumbnail
    Local smoothing estimates for the massless Dirac-Coulomb equation in 2 and 3 dimensions 
    Cacciafesta, Federico; Séré, Eric (2016) Article accepté pour publication ou publié
  • Thumbnail
    Local smoothing estimates for the massless Dirac-Coulomb equation in 2 and 3 dimensions 
    Cacciafesta, Federico; Séré, Eric (2016) Article accepté pour publication ou publié
  • Thumbnail
    Surface water waves as saddle points of the energy 
    Buffoni, Boris; Séré, Eric; Toland, John (2003) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo