• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • Consulter le document
  •   Accueil
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail

Distinguish the indistinguishable: a Deep Reinforcement Learning approach for volatility targeting models

Benhamou, Éric; Saltiel, David; Tabachnik, Serge; Wong, Sui Kai; Chareyron, François (2021), Distinguish the indistinguishable: a Deep Reinforcement Learning approach for volatility targeting models. https://basepub.dauphine.psl.eu/handle/123456789/22204

Voir/Ouvrir
DTU-VolatilityTargetting.pdf (1.287Mb)
Type
Document de travail / Working paper
Date
2021
Titre de la collection
Preprint Lamsade
Ville d’édition
Paris
Métadonnées
Afficher la notice complète
Auteur(s)
Benhamou, Éric
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Saltiel, David
Tabachnik, Serge
Wong, Sui Kai
Chareyron, François
Résumé (EN)
Can an agent efficiently learn to distinguish extremely similar financial models in an environment dominated by noise and regime changes? Standard statistical methods based on averaging or ranking models fail precisely because of regime changes and noisy environments. Additional contextual information in Deep Reinforcement Learning (DRL), helps training an agent distinguish different financial models whose time series are very similar. Our contributions are four-fold: (i) we combine model-based and modelfree Reinforcement Learning (RL). The last model-free RL allows us selecting the different models, (ii) we present a concept, called "walk-forward analysis", which is defined by successive training and testing based on expanding periods, to assert the robustness of the resulting agent, (iii) we present a method based on the importance of features that looks like the one in gradient boosting methods and is based on features sensitivities, (iv) last but not least, we introduce the concept of statistical difference significance based on a two-tailed T-test, to highlight the ways in which our models differ from more traditional ones. Our experimental results show that our approach outperforms the benchmarks in almost all evaluation metrics commonly used in financial mathematics, namely net performance, Sharpe ratio, Sortino, maximum drawdown, maximum drawdown over volatility.
Mots-clés
Features sensitivity; Walk forward; Portfolio allocation; Model-free; Model-based; Deep Reinforcement learning

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Deep Reinforcement Learning (DRL) for portfolio allocation 
    Benhamou, Éric; Saltiel, David; Ohana, Jean-Jacques; Atif, Jamal; Laraki, Rida Communication / Conférence
  • Vignette de prévisualisation
    Bridging the gap between Markowitz planning and deep reinforcement learning 
    Benhamou, Éric; Saltiel, David; Ungari, Sandrine; Mukhopadhyay, Abhishek (2020) Document de travail / Working paper
  • Vignette de prévisualisation
    Time your hedge with Deep Reinforcement Learning 
    Benhamou, Éric; Saltiel, David; Ungari, Sandrine; Mukhopadhyay, Abhishek (2020) Document de travail / Working paper
  • Vignette de prévisualisation
    AAMDRL: Augmented Asset Management with Deep Reinforcement Learning 
    Benhamou, Éric; Saltiel, David; Ungari, Sandrine; Mukhopadhyay, Abhishek; Atif, Jamal (2020) Document de travail / Working paper
  • Vignette de prévisualisation
    Is the Covid equity bubble rational? A machine learning answer 
    Ohana, Jean Jacques; Benhamou, Éric; Saltiel, David; Guez, Beatrice (2021) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo