• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Shapley values for LightGBM model applied to regime detection

Ohana, J; Ohana, S; Benhamou, Éric; Saltiel, D; Guez, B (2021), Shapley values for LightGBM model applied to regime detection. https://basepub.dauphine.psl.eu/handle/123456789/22205

View/Open
Shapley_value.pdf (818.1Kb)
Type
Document de travail / Working paper
Date
2021
Series title
Preprint Lamsade
Published in
Paris
Metadata
Show full item record
Author(s)
Ohana, J
Ohana, S
Benhamou, Éric
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Saltiel, D
Guez, B
Abstract (EN)
We consider a gradient boosting decision trees (GBDT) approach to predict large S&P 500 price drops from a set of 150 technical, fundamental and macroeconomic features. We report an improved accuracy of GBDT over other machine learning (ML) methods on the S&P 500 futures prices. We show that retaining fewer and carefully selected features provides improvements across all ML approaches. Shapley values have recently been introduced from game theory to the field of ML. They allow for a robust identification of the most important variables predicting stock market crises, and of a local explanation of the crisis probability at each date, through a consistent features attribution. We apply this methodology to analyse in detail the March 2020 financial meltdown, for which the model offered a timely out of sample prediction. This analysis unveils in particular the contrarian predictive role of the tech equity sector before and after the crash.
Subjects / Keywords
Explainable AI; GBDT; multi-agent environment; financial markets meltdown

Related items

Showing items related by title and author.

  • Thumbnail
    Regime change detection with GBDT and Shapley values 
    Benhamou, Éric; Ohana, Jean; Saltiel, David; Guez, Beatrice (2021) Document de travail / Working paper
  • Thumbnail
    Detecting crisis event with Gradient Boosting Decision Trees 
    Benhamou, Éric; Ohana, Jean; Saltiel, David; Guez, Beatrice (2021) Document de travail / Working paper
  • Thumbnail
    Is the Covid equity bubble rational? A machine learning answer 
    Ohana, Jean Jacques; Benhamou, Éric; Saltiel, David; Guez, Beatrice (2021) Document de travail / Working paper
  • Thumbnail
    Deep Reinforcement Learning (DRL) for portfolio allocation 
    Benhamou, Éric; Saltiel, David; Ohana, Jean-Jacques; Atif, Jamal; Laraki, Rida Communication / Conférence
  • Thumbnail
    House allocation with randomly generated preference lists 
    Benhamou, Eric; Saltiel, David; Ohana, Jean-Jacques; Atif, Jamal (2021) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo