• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Optimisation of the total population size with respect to the initial condition for semilinear parabolic equations: Two-scale expansions and symmetrisations.

Mazari, Idriss; Nadin, Grégoire; Toledo Marrero, Ana (2021), Optimisation of the total population size with respect to the initial condition for semilinear parabolic equations: Two-scale expansions and symmetrisations., Nonlinearity, 34, 11. 10.1088/1361-6544/ac23b9

View/Open
163759097186043.pdf (1018.Kb)
Type
Article accepté pour publication ou publié
External document link
https://hal.archives-ouvertes.fr/hal-03189056
Date
2021
Journal name
Nonlinearity
Volume
34
Number
11
Publisher
IOP Science
Publication identifier
10.1088/1361-6544/ac23b9
Metadata
Show full item record
Author(s)
Mazari, Idriss
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Institute for Analysis and Scientific Computing [Wien]
Nadin, Grégoire
Laboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
Toledo Marrero, Ana
Laboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
Abstract (EN)
In this article, we propose in-depth analysis and characterisation of the optimisers of the following optimisation problem: how to choose the initial condition u0 in order to maximise the spatial integral at a given time of the solution of the semilinear equation ut −∆u = f (u), under L ∞ and L 1 constraints on u0? Our contribution in the present paper is to give a characterisation of the behaviour of the optimiser u0 when it does not saturate the L ∞ constraints, which is a key step in implementing efficient numerical algorithms. We give such a characterisation under mild regularity assumptions by proving that in that case u0 can only take values in the "zone of concavity" of f. This is done using two-scale asymptotic expansions. We then show how well-known isoperimetric inequalities yield a full characterisation of maximisers when f is convex. Finally, we provide several numerical simulations in one and two dimensions that illustrate and exemplify the fact that such characterisations significantly improves the computational time. All our theoretical results are in the one-dimensional case and we offer several comments about possible generalisations to other contexts, or obstructions that may prohibit doing so.
Subjects / Keywords
Reaction-diffusion equations; optimal control; shape optimisation; two-scale exansions

Related items

Showing items related by title and author.

  • Thumbnail
    Optimisation of the total population size for logistic diffusive equations: bang-bang property and fragmentation rate. 
    Mazari, Idriss; Nadin, G.; Privat, Y. (2022) Article accepté pour publication ou publié
  • Thumbnail
    Localising optimality conditions for the linear optimal control of semilinear equations \emph{via} concentration results for oscillating solutions of linear parabolic equations 
    Mazari, Idriss; Nadin, Grégoire (2022) Document de travail / Working paper
  • Thumbnail
    The bang-bang property in some parabolic bilinear optimal control problems via two-scale asymptotic expansions 
    Mazari, Idriss (2022) Document de travail / Working paper
  • Thumbnail
    Qualitative analysis of optimisation problems with respect to non-constant Robin coefficients 
    Mazari, Idriss; Privat, Yannick (2022) Article accepté pour publication ou publié
  • Thumbnail
    Shape optimization of a weighted two-phase Dirichlet eigenvalue 
    Mazari, Idriss; Nadin, Grégoire; Privat, Yannick (2022) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo