Show simple item record

hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
hal.structure.identifierInstitute for Analysis and Scientific Computing [Wien]
dc.contributor.authorMazari, Idriss
hal.structure.identifierLaboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
dc.contributor.authorNadin, Grégoire
HAL ID: 4575
hal.structure.identifierLaboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
dc.contributor.authorToledo Marrero, Ana
dc.date.accessioned2021-11-22T14:42:21Z
dc.date.available2021-11-22T14:42:21Z
dc.date.issued2021
dc.identifier.issn0951-7715
dc.identifier.urihttps://basepub.dauphine.psl.eu/handle/123456789/22216
dc.language.isoenen
dc.subjectReaction-diffusion equationsen
dc.subjectoptimal controlen
dc.subjectshape optimisationen
dc.subjecttwo-scale exansionsen
dc.subject.ddc515en
dc.titleOptimisation of the total population size with respect to the initial condition for semilinear parabolic equations: Two-scale expansions and symmetrisations.en
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenIn this article, we propose in-depth analysis and characterisation of the optimisers of the following optimisation problem: how to choose the initial condition u0 in order to maximise the spatial integral at a given time of the solution of the semilinear equation ut −∆u = f (u), under L ∞ and L 1 constraints on u0? Our contribution in the present paper is to give a characterisation of the behaviour of the optimiser u0 when it does not saturate the L ∞ constraints, which is a key step in implementing efficient numerical algorithms. We give such a characterisation under mild regularity assumptions by proving that in that case u0 can only take values in the "zone of concavity" of f. This is done using two-scale asymptotic expansions. We then show how well-known isoperimetric inequalities yield a full characterisation of maximisers when f is convex. Finally, we provide several numerical simulations in one and two dimensions that illustrate and exemplify the fact that such characterisations significantly improves the computational time. All our theoretical results are in the one-dimensional case and we offer several comments about possible generalisations to other contexts, or obstructions that may prohibit doing so.en
dc.relation.isversionofjnlnameNonlinearity
dc.relation.isversionofjnlvol34en
dc.relation.isversionofjnlissue11en
dc.relation.isversionofjnldate2021-09
dc.relation.isversionofdoi10.1088/1361-6544/ac23b9en
dc.identifier.urlsitehttps://hal.archives-ouvertes.fr/hal-03189056en
dc.relation.isversionofjnlpublisherIOP Scienceen
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen
dc.description.ssrncandidatenon
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewedouien
dc.date.updated2021-11-22T14:29:46Z
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record