
Scalable Saturation of Streaming RDF Triples
Farvardin, Mohammad Amin; Colazzo, Dario; Belhajjame, Khalid; Sartiani, Carlo (2020), Scalable Saturation of Streaming RDF Triples, in Hameurlain, Abdelkader; Tjoa, A Min; Lamarre, Philippe; Zeitouni, Karine, Transactions on Large-Scale Data- and Knowledge-Centered Systems XLIV : Special Issue on Data Management – Principles, Technologies, and Applications, Springer, p. 1-40. 10.1007/978-3-662-62271-1_1
View/ Open
Type
Chapitre d'ouvrageDate
2020Book title
Transactions on Large-Scale Data- and Knowledge-Centered Systems XLIV : Special Issue on Data Management – Principles, Technologies, and ApplicationsBook author
Hameurlain, Abdelkader; Tjoa, A Min; Lamarre, Philippe; Zeitouni, KarinePublisher
Springer
ISBN
978-3-662-62270-4
Number of pages
195Pages
1-40
Publication identifier
Metadata
Show full item recordAuthor(s)
Farvardin, Mohammad AminLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Colazzo, Dario
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Belhajjame, Khalid
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Sartiani, Carlo
Abstract (EN)
In the Big Data era, RDF data are produced in high volumes. While there exist proposals for reasoning over large RDF graphs using big data platforms, there is a dearth of solutions that do so in environments where RDF data are dynamic, and where new instance and schema triples can arrive at any time. In this work, we present the first solution for reasoning over large streams of RDF data using big data platforms. In doing so, we focus on the saturation operation, which seeks to infer implicit RDF triples given RDF Schema or OWL constraints. Indeed, unlike existing solutions which saturate RDF data in bulk, our solution carefully identifies the fragment of the existing (and already saturated) RDF dataset that needs to be considered given the fresh RDF statements delivered by the stream. Thereby, it performs the saturation in an incremental manner. Experimental analysis shows that our solution outperforms existing bulk-based saturation solutions.Subjects / Keywords
Big dataRelated items
Showing items related by title and author.
-
Farvardin, Mohammad Amin; Colazzo, Dario; Belhajjame, Khalid; Sartiani, Carlo (2019) Communication / Conférence
-
Farvardin, Mohammad Amin (2021-01-19) Thèse
-
Baazizi, Mohamed-Amine; Colazzo, Dario; Ghelli, Giorgio; Sartiani, Carlo; Scherzinger, Stefanie (2021) Communication / Conférence
-
Baazizi, Mohamed-Amine; Colazzo, Dario; Ghelli, Giorgio; Sartiani, Carlo (2019) Communication / Conférence
-
Baazizi, Mohamed-Amine; Colazzo, Dario; Ghelli, Giorgio; Sartiani, Carlo (2019) Communication / Conférence