
Crystallinity of the homogenized energy density of periodic lattice systems
Chambolle, Antonin; Kreutz, Leonard (2023), Crystallinity of the homogenized energy density of periodic lattice systems, Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 21, 1. 10.1137/21M1442073
View/ Open
Type
Article accepté pour publication ou publiéDate
2023Journal name
Multiscale Modeling and Simulation: A SIAM Interdisciplinary JournalVolume
21Number
1Publisher
SIAM - Society for Industrial and Applied Mathematics
Publication identifier
Metadata
Show full item recordAuthor(s)
Chambolle, AntoninCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Kreutz, Leonard
Fachbereich Mathematik und Informatik [Münster] = Fachbereich Mathematik und Informatik [Münster] [FB 10]
Abstract (EN)
We study the homogenized energy densities of periodic ferromagnetic Ising systems. We prove that, for finite range interactions, the homogenized energy density, identifying the effective limit, is crystalline, i.e. its Wulff crystal is a polytope, for which we can (exponentially) bound the number of vertices. This is achieved by deriving a dual representation of the energy density through a finite cell formula. This formula also allows easy numerical computations: we show a few experiments where we compute periodic patterns which minimize the anisotropy of the surface tension.Subjects / Keywords
Γ-convergence; Ising system; Crystallinity; Wulff ShapeRelated items
Showing items related by title and author.
-
Alouges, François; Chambolle, Antonin; Stantejsky, Dominik (2021) Article accepté pour publication ou publié
-
Alter, François; Caselles, Vincent; Chambolle, Antonin (2005) Article accepté pour publication ou publié
-
Bogensperger, Lea; Chambolle, Antonin; Pock, Thomas (2022) Article accepté pour publication ou publié
-
Chambolle, Antonin; Laux, Tim (2021) Article accepté pour publication ou publié
-
Bourdin, Blaise; Chambolle, Antonin (2000) Article accepté pour publication ou publié