
Clinical BCI Challenge-WCCI2020: RIGOLETTO -- RIemannian GeOmetry LEarning, applicaTion To cOnnectivity
Corsi, Marie-Constance; Yger, Florian; Chevallier, Sylvain; Noûs, Camille (2021), Clinical BCI Challenge-WCCI2020: RIGOLETTO -- RIemannian GeOmetry LEarning, applicaTion To cOnnectivity. https://basepub.dauphine.psl.eu/handle/123456789/22293
Author(s)
Corsi, Marie-ConstanceYger, Florian
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Chevallier, Sylvain
Noûs, Camille
Abstract (EN)
This short technical report describes the approach submitted to the Clinical BCI Challenge-WCCI2020. This submission aims to classify motor imagery task from EEG signals and relies on Riemannian Geometry, with a twist. Instead of using the classical covariance matrices, we also rely on measures of functional connectivity. Our approach ranked 1st on the task 1 of the competition.Subjects / Keywords
Riemannian geometry; Functional connectivity; Ensemble learning; BCIRelated items
Showing items related by title and author.
-
Corsi, Marie-Constance; Yger, Florian; Chevallier, Sylvain; Noûs, Camille (2021) Communication / Conférence
-
Chevallier, Sylvain; Corsi, Marie-Constance; Yger, Florian; de Vico Fallani, Fabrizio (2022) Article accepté pour publication ou publié
-
Corsi, Marie-Constance; Chevallier, Sylvain; Barthélemy, Quentin; Hoxha, Isabelle; Yger, Florian Communication / Conférence
-
Chevallier, Sylvain; Corsi, Marie-Constance; Yger, Florian; Noûs, Camille (2020) Communication / Conférence
-
Corsi, Marie-Constance; Chevallier, Sylvain; de Vico Fallani, Fabrizio; Yger, Florian (2022) Article accepté pour publication ou publié