• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Finer Tight Bounds for Coloring on Clique-Width

Lampis, Michael (2019), Finer Tight Bounds for Coloring on Clique-Width, SIAM Journal on Discrete Mathematics, 34, 3, p. 1538–1558. 10.1137/19M1280326

View/Open
LIPIcs-ICALP-2018-86.pdf (454.6Kb)
Type
Article accepté pour publication ou publié
Date
2019
Journal name
SIAM Journal on Discrete Mathematics
Volume
34
Number
3
Publisher
SIAM - Society for Industrial and Applied Mathematics
Pages
1538–1558
Publication identifier
10.1137/19M1280326
Metadata
Show full item record
Author(s)
Lampis, Michael
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
We revisit the complexity of the classical $k$-Coloring problem parameterized by clique-width. This is a very well-studied problem that becomes highly intractable when the number of colors $k$ is large. However, much less is known on its complexity for small, concrete values of $k$. In this paper, we completely determine, under the Strong Exponential Time Hypothesis (SETH), for any fixed constant $k$, the complexity of $k$-Coloring parameterized by clique-width. Specifically, we show that for all $k\ge 3,\epsilon>0$, $k$-Coloring cannot be solved in time $O^*\left((2^k-2-\epsilon)^{{cw}}\right)$, and give an algorithm running in time $O^*\left((2^k-2)^{{cw}}\right)$. Thus, if the SETH is true, $2^k-2$ is the “correct” base of the exponent for every fixed $k$. Along the way, we also consider the complexity of $k$-Coloring parameterized by the related parameter modular treewidth (${mtw}$). In this case we show that the “correct” running time under the SETH is $O^*\big({k\choose \lfloor k/2\rfloor}^{{mtw}}\big)$. If we base our results on a weaker assumption (the ETH), they imply that $k$-Coloring cannot be solved in time $n^{o({cw})}$, even on instances with $O(\log n)$ colors.
Subjects / Keywords
Clique-width; SETH; Coloring

Related items

Showing items related by title and author.

  • Thumbnail
    Finer Tight Bounds for Coloring on Clique-Width 
    Lampis, Michael (2018) Communication / Conférence
  • Thumbnail
    Structural parameters, tight bounds, and approximation for (k,r)-center 
    Katsikarelis, Ioannis; Lampis, Michael; Paschos, Vangelis (2019) Article accepté pour publication ou publié
  • Thumbnail
    Structural Parameters, Tight Bounds, and Approximation for (k, r)-Center 
    Katsikarelis, Ioannis; Lampis, Michael; Paschos, Vangelis (2017) Communication / Conférence
  • Thumbnail
    Upper Dominating Set: Tight Algorithms for Pathwidth and Sub-exponential Approximation 
    Dublois, Louis; Lampis, Michael; Paschos, Vangelis (2021) Communication / Conférence
  • Thumbnail
    Fine-Grained Meta-Theorems for Vertex Integrity 
    Lampis, Michael; Mitsou, Valia (2021) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo