• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

On the analogy between real reductive groups and Cartan motion groups. II: Contraction of irreducible tempered representations

Afgoustidis, Alexandre (2020), On the analogy between real reductive groups and Cartan motion groups. II: Contraction of irreducible tempered representations, Duke Mathematical Journal, 169, 5, p. 897-960. 10.1215/00127094-2019-0071

View/Open
1808.09525.pdf (598.2Kb)
Type
Article accepté pour publication ou publié
Date
2020
Journal name
Duke Mathematical Journal
Volume
169
Number
5
Publisher
Duke University Press
Pages
897-960
Publication identifier
10.1215/00127094-2019-0071
Metadata
Show full item record
Author(s)
Afgoustidis, Alexandre
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
Attached to any reductive Lie group G is a "Cartan motion group" G0 − a Lie group with the same dimension as G, but a simpler group structure. A natural one-to-one correspondence between the irreducible tempered representations of G and the unitary irreducible representations of G0, whose existence had been suggested by Mackey in the 1970s, has recently been described by the author. In the present notes, we use the existence of a family of groups interpolating between G and G0 to realize the bijection as a deformation: for every irreducible tempered representation π of G, we build, in an appropriate Fr\'echet space, a family of subspaces and evolution operators that contract π onto the corresponding representation of G0.
Subjects / Keywords
Cartan motion group; contractions of Lie groups; deformation of representations; Mackey analogy; Mackey–Higson bijection; real reductive groups; tempered representations

Related items

Showing items related by title and author.

  • Thumbnail
    On the analogy between real reductive groups and Cartan motion groups. III: A proof of the Connes-Kasparov isomorphism 
    Afgoustidis, Alexandre (2019) Article accepté pour publication ou publié
  • Thumbnail
    On the analogy between real reductive groups and Cartan motion groups. I: The Mackey-Higson bijection 
    Afgoustidis, Alexandre (2021) Document de travail / Working paper
  • Thumbnail
    How tempered representations of a semisimple Lie group contract to its Cartan motion group 
    Afgoustidis, Alexandre (2015) Document de travail / Working paper
  • Thumbnail
    A Mackey-analogy-based Proof of the Connes-Kasparov Isomorphism for Real Reductive Groups 
    Afgoustidis, Alexandre (2016) Document de travail / Working paper
  • Thumbnail
    La distinction entre la formation et l’exécution du contrat : contribution à l’étude du contrat dans le temps 
    Lepic, Sabine (2017-12-07) Thèse
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo