
On the analogy between real reductive groups and Cartan motion groups. II: Contraction of irreducible tempered representations
Afgoustidis, Alexandre (2020), On the analogy between real reductive groups and Cartan motion groups. II: Contraction of irreducible tempered representations, Duke Mathematical Journal, 169, 5, p. 897-960. 10.1215/00127094-2019-0071
Voir/Ouvrir
Type
Article accepté pour publication ou publiéDate
2020Nom de la revue
Duke Mathematical JournalVolume
169Numéro
5Éditeur
Duke University Press
Pages
897-960
Identifiant publication
Métadonnées
Afficher la notice complèteRésumé (EN)
Attached to any reductive Lie group G is a "Cartan motion group" G0 − a Lie group with the same dimension as G, but a simpler group structure. A natural one-to-one correspondence between the irreducible tempered representations of G and the unitary irreducible representations of G0, whose existence had been suggested by Mackey in the 1970s, has recently been described by the author. In the present notes, we use the existence of a family of groups interpolating between G and G0 to realize the bijection as a deformation: for every irreducible tempered representation π of G, we build, in an appropriate Fr\'echet space, a family of subspaces and evolution operators that contract π onto the corresponding representation of G0.Mots-clés
Cartan motion group; contractions of Lie groups; deformation of representations; Mackey analogy; Mackey–Higson bijection; real reductive groups; tempered representationsPublications associées
Affichage des éléments liés par titre et auteur.
-
Afgoustidis, Alexandre (2019) Article accepté pour publication ou publié
-
Afgoustidis, Alexandre (2021) Document de travail / Working paper
-
Afgoustidis, Alexandre (2015) Document de travail / Working paper
-
Afgoustidis, Alexandre (2016) Document de travail / Working paper
-
Lepic, Sabine (2017-12-07) Thèse