• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

On the analogy between real reductive groups and Cartan motion groups. III: A proof of the Connes-Kasparov isomorphism

Afgoustidis, Alexandre (2019), On the analogy between real reductive groups and Cartan motion groups. III: A proof of the Connes-Kasparov isomorphism, Journal of Functional Analysis, 277, 7, p. 2237-2258. 10.1016/j.jfa.2019.02.023

View/Open
1602.08891.pdf (206.3Kb)
Type
Article accepté pour publication ou publié
External document link
https://hal.archives-ouvertes.fr/hal-01284057
Date
2019
Journal name
Journal of Functional Analysis
Volume
277
Number
7
Publisher
Elsevier
Pages
2237-2258
Publication identifier
10.1016/j.jfa.2019.02.023
Metadata
Show full item record
Author(s)
Afgoustidis, Alexandre
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
Alain Connes and Nigel Higson pointed out in the 1990s that the Connes-Kasparov “conjecture” for the K-theory of reduced group C∗-algebras seemed, in the case of reductive Lie groups, to be a cohomological echo of a conjecture of George Mackey concerning the rigidity of representation theory along the deformation from a real reductive group to its Cartan motion group. For complex semisimple groups, Nigel Higson established in 2008 that Mackey's analogy is a real phenomenon, and does lead to a simple proof of the Connes-Kasparov isomorphism. We here turn to more general reductive groups and use our recent work on Mackey's proposal, together with Higson's work, to obtain a new proof of the Connes-Kasparov isomorphism.
Subjects / Keywords
Group C*-algebras; Baum-Connes (Connes-Kasparov) isomorphism; Reductive Lie groups; Lie group contractions; Tempered representations; Higson-Mackey analogy

Related items

Showing items related by title and author.

  • Thumbnail
    On the analogy between real reductive groups and Cartan motion groups. II: Contraction of irreducible tempered representations 
    Afgoustidis, Alexandre (2020) Article accepté pour publication ou publié
  • Thumbnail
    A Mackey-analogy-based Proof of the Connes-Kasparov Isomorphism for Real Reductive Groups 
    Afgoustidis, Alexandre (2016) Document de travail / Working paper
  • Thumbnail
    On the analogy between real reductive groups and Cartan motion groups. I: The Mackey-Higson bijection 
    Afgoustidis, Alexandre (2021) Document de travail / Working paper
  • Thumbnail
    How tempered representations of a semisimple Lie group contract to its Cartan motion group 
    Afgoustidis, Alexandre (2015) Document de travail / Working paper
  • Thumbnail
    How tempered representations of a semisimple Lie group contract to its Cartan motion group 
    Afgoustidis, Alexandre (2015) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo