
The Hartree and Vlasov equations at positive density
Lewin, Mathieu; Sabin, Julien (2020), The Hartree and Vlasov equations at positive density, Communications in Partial Differential Equations, 45, 12, p. 1702-1754. 10.1080/03605302.2020.1803355
View/ Open
Type
Article accepté pour publication ou publiéDate
2020Journal name
Communications in Partial Differential EquationsVolume
45Number
12Publisher
Taylor & Francis
Pages
1702-1754
Publication identifier
Metadata
Show full item recordAuthor(s)
Lewin, Mathieu
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Sabin, Julien
Laboratoire de Mathématiques d'Orsay [LMO]
Abstract (EN)
We consider the nonlinear Hartree and Vlasov equations around a translation-invariant (homogeneous) stationary state in infinite volume, for a short range interaction potential. For both models, we consider time-dependent solutions which have a finite relative energy with respect to the reference translation-invariant state. We prove the convergence of the Hartree solutions to the Vlasov ones in a semi-classical limit and obtain as a by-product global well-posedness of the Vlasov equation in the (relative) energy space.Subjects / Keywords
Hartree equation; positive density; semiclassical analysisRelated items
Showing items related by title and author.
-
Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas (2015) Communication / Conférence
-
Lewin, Mathieu; Madsen, Peter; Triay, Arnaud (2019) Article accepté pour publication ou publié
-
Lewin, Mathieu; Lieb, Elliott H.; Seiringer, Robert (2019-03) Document de travail / Working paper
-
Lewin, Mathieu; Lieb, Elliott H.; Seiringer, Robert (2020) Article accepté pour publication ou publié
-
Lewin, Mathieu; Rota Nodari, Simona (2020) Article accepté pour publication ou publié