• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

The Hartree and Vlasov equations at positive density

Lewin, Mathieu; Sabin, Julien (2020), The Hartree and Vlasov equations at positive density, Communications in Partial Differential Equations, 45, 12, p. 1702-1754. 10.1080/03605302.2020.1803355

View/Open
1910.09392.pdf (679.2Kb)
Type
Article accepté pour publication ou publié
Date
2020
Journal name
Communications in Partial Differential Equations
Volume
45
Number
12
Publisher
Taylor & Francis
Pages
1702-1754
Publication identifier
10.1080/03605302.2020.1803355
Metadata
Show full item record
Author(s)
Lewin, Mathieu cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Sabin, Julien
Laboratoire de Mathématiques d'Orsay [LMO]
Abstract (EN)
We consider the nonlinear Hartree and Vlasov equations around a translation-invariant (homogeneous) stationary state in infinite volume, for a short range interaction potential. For both models, we consider time-dependent solutions which have a finite relative energy with respect to the reference translation-invariant state. We prove the convergence of the Hartree solutions to the Vlasov ones in a semi-classical limit and obtain as a by-product global well-posedness of the Vlasov equation in the (relative) energy space.
Subjects / Keywords
Hartree equation; positive density; semiclassical analysis

Related items

Showing items related by title and author.

  • Thumbnail
    Bose gases at positive temperature and non-linear Gibbs measures 
    Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas (2015) Communication / Conférence
  • Thumbnail
    Semi-classical limit of large fermionic systems at positive temperature 
    Lewin, Mathieu; Madsen, Peter; Triay, Arnaud (2019) Article accepté pour publication ou publié
  • Thumbnail
    The Local Density Approximation in Density Functional Theory 
    Lewin, Mathieu; Lieb, Elliott H.; Seiringer, Robert (2019-03) Document de travail / Working paper
  • Thumbnail
    The Local Density Approximation in Density Functional Theory 
    Lewin, Mathieu; Lieb, Elliott H.; Seiringer, Robert (2020) Article accepté pour publication ou publié
  • Thumbnail
    The double-power nonlinear Schrödinger equation and its generalizations: uniqueness, non-degeneracy and applications 
    Lewin, Mathieu; Rota Nodari, Simona (2020) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo