• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Vanishing capillarity limit of the Navier-Stokes-Korteweg system in one dimension with degenerate viscosity coefficient and discontinuous initial density

Burtea, Cosmin; Haspot, Boris (2022), Vanishing capillarity limit of the Navier-Stokes-Korteweg system in one dimension with degenerate viscosity coefficient and discontinuous initial density, SIAM Journal on Mathematical Analysis, 54, 2, p. 36. 10.1137/21M1428686

View/Open
BurteaHaspot_hall_version.pdf (453.0Kb)
Type
Article accepté pour publication ou publié
Date
2022
Journal name
SIAM Journal on Mathematical Analysis
Volume
54
Number
2
Publisher
SIAM - Society for Industrial and Applied Mathematics
Pages
36
Publication identifier
10.1137/21M1428686
Metadata
Show full item record
Author(s)
Burtea, Cosmin
Institut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG (UMR_7586)]
Haspot, Boris
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
In the first main result of this paper we prove that one can approximate discontinious solutions of the 1d Navier Stokes system with solutions of the 1d Navier-Stokes-Korteweg system as the capilarity parameter tends to 0. Moreover, we allow the viscosity coefficients µ = µ (ρ) to degenerate near vaccum. In order to obtain this result, we propose two main technical novelties. First of all, we provide an upper bound for the density verifing NSK that does not degenerate when the capillarity coefficient tends to 0. Second of all, we are able to show that the positive part of the effective velocity is bounded uniformly w.r.t. the capillary coefficient. This turns out to be crucial in providing a lower bound for the density. The second main result states the existene of unique finite-energy global strong solutions for the 1d Navier-Stokes system assuming only that ρ0, 1/ρ0 ∈ L ∞. This last result finds itself a natural application in the context of the mathematical modeling of multiphase flows.
Subjects / Keywords
Navier--Stokes in one dimension; fluid mechanics; effective velocity

Related items

Showing items related by title and author.

  • Thumbnail
    New effective pressure and existence of global strong solution for compressible Navier-Stokes equations with general viscosity coefficient in one dimension 
    Burtea, Cosmin; Haspot, Boris (2020) Article accepté pour publication ou publié
  • Thumbnail
    Existence of global strong solution for Korteweg system in one dimension for strongly degenerate viscosity coefficients 
    Burtea, Cosmin; Haspot, Boris (2022) Article accepté pour publication ou publié
  • Thumbnail
    Existence of global strong solution and vanishing capillarity-viscosity limit in one dimension for the Korteweg system 
    Haspot, Boris; Charve, Frédéric (2013) Article accepté pour publication ou publié
  • Thumbnail
    Weak-Strong uniqueness for compressible Navier-Stokes system with degenerate viscosity coefficient and vacuum in one dimension 
    Haspot, Boris (2017) Article accepté pour publication ou publié
  • Thumbnail
    Existence of global strong solution for the compressible Navier-Stokes equations with degenerate viscosity coefficients in 1D 
    Haspot, Boris (2018) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo