hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Liu, Yating | |
hal.structure.identifier | Laboratoire de Probabilités, Statistique et Modélisation [LPSM (UMR_8001)] | |
dc.contributor.author | Pagès, Gilles | |
dc.date.accessioned | 2021-12-09T10:12:02Z | |
dc.date.available | 2021-12-09T10:12:02Z | |
dc.date.issued | 2022 | |
dc.identifier.issn | 0304-4149 | |
dc.identifier.uri | https://basepub.dauphine.psl.eu/handle/123456789/22346 | |
dc.language.iso | en | en |
dc.subject | Convex order | |
dc.subject | Monotone convex order | |
dc.subject | McKean-Vlasov process | |
dc.subject | Truncated Eulerscheme | |
dc.subject.ddc | 519 | en |
dc.title | Monotone convex order for the McKean-Vlasov processes | |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | In this paper, we establish the monotone convex order between two R-valued McKean-Vlasov processes X=(Xt)t∈[0,T] and Y=(Yt)t∈[0,T] defined on a filtered probability space (Ω,F,(Ft)t≥0,P) bydXt=b(t,Xt,μt)dt+σ(t,Xt,μt)dBt,X0∈Lp(P)withp≥2,dYt=β(t,Yt,νt)dt+θ(t,Yt,νt)dBt,Y0∈Lp(P),where ∀t∈[0,T],μt=P∘X−1t,νt=P∘Y−1t. If we make the convexity and monotony assumption (only) on b and |σ| and if b≤β and |σ|≤|θ|, then the monotone convex order for the initial random variable X0⪯mcvY0 can be propagated to the whole path of processes X and Y. That is, if we consider a non-decreasing convex functional F defined on the path space with polynomial growth, we have EF(X)≤EF(Y); for a non-decreasing convex functional G defined on the product space involving the path space and its marginal distribution space, we have EG(X,(μt)t∈[0,T])≤EG(Y,(νt)t∈[0,T]) under appropriate conditions. The symmetric setting is also valid, that is, if Y0⪯mcvX0 and |θ|≤|σ|, then EF(Y)≤EF(X) and EG(Y,(νt)t∈[0,T])≤EG(X,(μt)t∈[0,T]). The proof is based on several forward and backward dynamic programming principle and the convergence of the truncated Euler scheme of the McKean-Vlasov equation. | |
dc.publisher.city | Paris | |
dc.relation.isversionofjnlname | Stochastic Processes and their Applications | |
dc.relation.isversionofjnlvol | 152 | |
dc.relation.isversionofjnldate | 2022 | |
dc.relation.isversionofjnlpages | 312-338 | |
dc.relation.isversionofdoi | 10.1016/j.spa.2022.06.003 | |
dc.relation.isversionofjnlpublisher | Elsevier | |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | non | |
dc.description.readership | recherche | |
dc.description.audience | International | |
dc.relation.Isversionofjnlpeerreviewed | oui | |
dc.date.updated | 2023-02-06T11:45:35Z | |
hal.author.function | aut | |
hal.author.function | aut | |