
Local bandwidth selection for kernel density estimation in a bifurcating Markov chain model
Bitseki Penda, Siméon Valère; Roche, Angelina (2020), Local bandwidth selection for kernel density estimation in a bifurcating Markov chain model, Journal of Nonparametric Statistics, 32, 3, p. 535-562. 10.1080/10485252.2020.1789125
View/ Open
Type
Article accepté pour publication ou publiéDate
2020Journal name
Journal of Nonparametric StatisticsVolume
32Number
3Publisher
Taylor & Francis
Pages
535-562
Publication identifier
Metadata
Show full item recordAuthor(s)
Bitseki Penda, Siméon ValèreInstitut de Mathématiques de Bourgogne [Dijon] [IMB]
Roche, Angelina
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We propose an adaptive estimator for the stationary distribution of a bifurcating Markov Chain onRd. Bifurcating Markov chains (BMC for short) are a class of stochastic processes indexed by regular binary trees. A kernel estimator is proposed whose bandwidths are selected by a method inspired by the works of Goldenshluger and Lepski [(2011), 'Bandwidth Selection in Kernel Density Estimation: Oracle Inequalities and Adaptive Minimax Optimality',The Annals of Statistics3: 1608-1632). Drawing inspiration from dimension jump methods for model selection, we also provide an algorithm to select the best constant in the penalty. Finally, we investigate the performance of the method by simulation studies and application to real data.Subjects / Keywords
Nonparametric kernel estimation; Goldenshluger-Lepski methodology; adaptive estimation; binary trees; bifurcating autoregressive processesRelated items
Showing items related by title and author.
-
Hoffmann, Marc; Olivier, Adélaïde; Valère Bitseki Penda, Siméon (2017) Article accepté pour publication ou publié
-
Valère Bitseki Penda, Siméon; Olivier, Adélaïde (2017) Article accepté pour publication ou publié
-
Chagny, Gaëlle; Channarond, Antoine; Hoang, Van Ha; Roche, Angelina (2022) Article accepté pour publication ou publié
-
Roche, Angelina (2018) Document de travail / Working paper
-
Chagny, Gaëlle; Meynaoui, Anouar; Roche, Angelina (2022) Document de travail / Working paper