
Shape optimization of a weighted two-phase Dirichlet eigenvalue
Mazari, Idriss; Nadin, Grégoire; Privat, Yannick (2022), Shape optimization of a weighted two-phase Dirichlet eigenvalue, Archive for Rational Mechanics and Analysis, 243, p. 95–137. 10.1007/s00205-021-01726-4
View/ Open
Type
Article accepté pour publication ou publiéDate
2022Journal name
Archive for Rational Mechanics and AnalysisVolume
243Publisher
Springer
Pages
95–137
Publication identifier
Metadata
Show full item recordAuthor(s)
Mazari, IdrissCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Nadin, Grégoire
Laboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
Privat, Yannick

Institut Universitaire de France [IUF]
Institut de Recherche Mathématique Avancée [IRMA]
Abstract (EN)
Let m be a bounded function and α a nonnegative parameter. This article is concerned with the first eigenvalue λα(m) of the drifted Laplacian type operator Lm given by Lm(u)=−div((1+αm)∇u)−mu on a smooth bounded domain, with Dirichlet boundary conditions. Assuming uniform pointwise and integral bounds on m, we investigate the issue of minimizing λα(m) with respect to m. Such a problem is related to the so-called ``two phase extremal eigenvalue problem'' and arises naturally, for instance in population dynamics where it is related to the survival ability of a species in a domain. We prove that unless the domain is a ball, this problem has no ``regular'' solution. We then provide a careful analysis in the case of a ball by: (1) characterizing the solution among all radially symmetric resources distributions, with the help of a new method involving a homogenized version of the problem; (2) proving in a more general setting, a stability result for the centered distribution of resources with the help of a monotonicity principle for second order shape derivatives which significantly simplifies the analysis.Subjects / Keywords
drifted Laplacian; bang-bang functions; spectral optimization; reaction-diffusion equations; homogenization; shape derivativesRelated items
Showing items related by title and author.
-
Mazari, Idriss; Nadin, Grégoire; Toledo Marrero, Ana (2021) Article accepté pour publication ou publié
-
Lamboley, Jimmy; Laurain, Antoine; Nadin, Grégoire; Privat, Yannick (2016) Article accepté pour publication ou publié
-
Mazari, Idriss (2023) Article accepté pour publication ou publié
-
Mazari, Idriss; Nadin, Grégoire (2022) Document de travail / Working paper
-
Chambolle, Antonin; Mazari, Idriss; Privat, Yannick (2023) Document de travail / Working paper