• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Shape optimization of a weighted two-phase Dirichlet eigenvalue

Mazari, Idriss; Nadin, Grégoire; Privat, Yannick (2022), Shape optimization of a weighted two-phase Dirichlet eigenvalue, Archive for Rational Mechanics and Analysis, 243, p. 95–137. 10.1007/s00205-021-01726-4

View/Open
ArticleDrifted_MNP.pdf (565.9Kb)
Type
Article accepté pour publication ou publié
Date
2022
Journal name
Archive for Rational Mechanics and Analysis
Volume
243
Publisher
Springer
Pages
95–137
Publication identifier
10.1007/s00205-021-01726-4
Metadata
Show full item record
Author(s)
Mazari, Idriss
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Nadin, Grégoire
Laboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
Privat, Yannick cc
Institut Universitaire de France [IUF]
Institut de Recherche Mathématique Avancée [IRMA]
Abstract (EN)
Let m be a bounded function and α a nonnegative parameter. This article is concerned with the first eigenvalue λα(m) of the drifted Laplacian type operator Lm given by Lm(u)=−div((1+αm)∇u)−mu on a smooth bounded domain, with Dirichlet boundary conditions. Assuming uniform pointwise and integral bounds on m, we investigate the issue of minimizing λα(m) with respect to m. Such a problem is related to the so-called ``two phase extremal eigenvalue problem'' and arises naturally, for instance in population dynamics where it is related to the survival ability of a species in a domain. We prove that unless the domain is a ball, this problem has no ``regular'' solution. We then provide a careful analysis in the case of a ball by: (1) characterizing the solution among all radially symmetric resources distributions, with the help of a new method involving a homogenized version of the problem; (2) proving in a more general setting, a stability result for the centered distribution of resources with the help of a monotonicity principle for second order shape derivatives which significantly simplifies the analysis.
Subjects / Keywords
drifted Laplacian; bang-bang functions; spectral optimization; reaction-diffusion equations; homogenization; shape derivatives

Related items

Showing items related by title and author.

  • Thumbnail
    Optimisation of the total population size with respect to the initial condition for semilinear parabolic equations: Two-scale expansions and symmetrisations. 
    Mazari, Idriss; Nadin, Grégoire; Toledo Marrero, Ana (2021) Article accepté pour publication ou publié
  • Thumbnail
    Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions 
    Lamboley, Jimmy; Laurain, Antoine; Nadin, Grégoire; Privat, Yannick (2016) Article accepté pour publication ou publié
  • Thumbnail
    Some comparison results and a partial bang-bang property for two-phases problems in balls 
    Mazari, Idriss (2023) Article accepté pour publication ou publié
  • Thumbnail
    Localising optimality conditions for the linear optimal control of semilinear equations \emph{via} concentration results for oscillating solutions of linear parabolic equations 
    Mazari, Idriss; Nadin, Grégoire (2022) Document de travail / Working paper
  • Thumbnail
    Optimisation of the total population size for logistic diffusive equations: bang-bang property and fragmentation rate. 
    Mazari, Idriss; Nadin, G.; Privat, Y. (2022) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo