Strategic information transmission with sender's approval
Forges, Françoise; Renault, Jérôme (2021), Strategic information transmission with sender's approval, International Journal of Game Theory, 50, 2, p. 475-502. 10.1007/s00182-021-00757-1
Type
Article accepté pour publication ou publiéDate
2021Nom de la revue
International Journal of Game TheoryVolume
50Numéro
2Éditeur
Springer
Pages
475-502
Identifiant publication
Métadonnées
Afficher la notice complèteAuteur(s)
Forges, FrançoiseCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Laboratoire d'Economie de Dauphine [LEDa]
Renault, Jérôme
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Centre de Mathématiques Appliquées - Ecole Polytechnique [CMAP]
Résumé (EN)
We consider sender–receiver games in which the sender has finitely many types and the receiver makes a decision in a compact set. The new feature is that, after the cheap talk phase, the receiver makes a proposal to the sender, which the latter can reject in favor of an outside option. We focus on situations in which the sender’s approval is absolutely crucial to the receiver, namely, on equilibria in which the sender does not exit at the approval stage. A nonrevealing equilibrium without exit may not exist. Our main results are that if the sender has only two types or if the receiver’s preferences over decisions do not depend on the type of the sender, there exists a (perfect Bayesian Nash) partitional equilibrium without exit, in which the sender transmits information by means of a pure strategy. The previous existence results do not extend: we construct a counter-example (with three types for the sender and type-dependent utility functions) in which there is no equilibrium without exit, even if the sender can randomize over messages. We establish additional existence results for (possibly mediated) equilibria without exit in the three type case.Mots-clés
Approval; Cheap talk; Sender–receiver game; Participation constraintsPublications associées
Affichage des éléments liés par titre et auteur.
-
Sémirat, Stéphan; Forges, Françoise (2022-07) Article accepté pour publication ou publié
-
Sémirat, Stéphan; Forges, Françoise (2021) Document de travail / Working paper
-
Forges, Françoise; Horst, Ulrich (2018) Article accepté pour publication ou publié
-
Forges, Françoise; Koessler, Frédéric (2008) Article accepté pour publication ou publié
-
Forges, Françoise; Serrano, Roberto (2013) Article accepté pour publication ou publié