
Anisotropic and crystalline mean curvature flow of mean-convex sets
Chambolle, Antonin; Novaga, Matteo (2022), Anisotropic and crystalline mean curvature flow of mean-convex sets, Annali della Scuola Normale Superiore di Pisa, XXIII, 2, p. 623-643. 10.2422/2036-2145.202005_009
View/ Open
Type
Article accepté pour publication ou publiéDate
2022Journal name
Annali della Scuola Normale Superiore di PisaVolume
XXIIINumber
2Publisher
Scuola normale superiore
Pages
623-643
Publication identifier
Metadata
Show full item recordAuthor(s)
Chambolle, AntoninCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Novaga, Matteo
Dipartimento di Matematica Pura e Applicata [Padova]
Abstract (EN)
We consider a variational scheme for the anisotropic (including crystalline) mean curvature flow of sets with strictly positive anisotropic mean curvature. We show that such condition is preserved by the scheme, and we prove the strict convergence in BV of the time-integrated perimeters of the approximating evolutions, extending a recent result of De Philippis and Laux to the anisotropic setting. We also prove uniqueness of the flat flow obtained in the limit.Subjects / Keywords
Anisotropic mean curvature flow; crystal growth; minimizing movements; mean convexity; arrival time; 1-superharmonic functionsRelated items
Showing items related by title and author.
-
Chambolle, Antonin; Novaga, Matteo (2022) Document de travail / Working paper
-
Chambolle, Antonin; de Gennaro, Daniele; Morini, Massimiliano (2022) Document de travail / Working paper
-
Bellettini, Giovanni; Chambolle, Antonin; Kholmatov, Shokhrukh (2021) Article accepté pour publication ou publié
-
Alter, François; Caselles, Vincent; Chambolle, Antonin (2005) Article accepté pour publication ou publié
-
Chambolle, Antonin; Lussardi, Luca; Villa, Elena (2021) Article accepté pour publication ou publié