• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Infering population history with DIY ABC : a user-friendly approach to Approximate Bayesian Computation

Estoup, Arnaud; Marin, Jean-Michel; Robert, Christian P.; Beaumont, Mark A.; Santos, Filipe; Guillemaud, Thomas; Balding, David; Cornuet, Jean-Marie (2008), Infering population history with DIY ABC : a user-friendly approach to Approximate Bayesian Computation, Bioinformatics, 24, 23, p. 2713-2719. http://dx.doi.org/10.1093/bioinformatics/btn514

View/Open
diyabc.pdf (460.6Kb)
Type
Article accepté pour publication ou publié
Date
2008-04
Journal name
Bioinformatics
Volume
24
Number
23
Publisher
Oxford University Press
Pages
2713-2719
Publication identifier
http://dx.doi.org/10.1093/bioinformatics/btn514
Metadata
Show full item record
Author(s)
Estoup, Arnaud cc
Marin, Jean-Michel cc
Robert, Christian P.
Beaumont, Mark A.
Santos, Filipe
Guillemaud, Thomas cc
Balding, David
Cornuet, Jean-Marie
Abstract (EN)
Genetic data obtained on population samples convey information about their evolutionary history. Inference methods can extract part of this information but they require sophisticated statistical techniques that have been made available to the biologist community (through computer programs) only for simple and standard situations typically involving a small number of samples. We propose here a computer program (DIY ABC) for inference based on approximate Bayesian computation (ABC), in which scenarios can be customized by the user to fit many complex situations involving any number of populations and samples. Such scenarios involve any combination of population divergences, admixtures and population size changes. DIY ABC can be used to compare competing scenarios, estimate parameters for one or more scenarios and compute bias and precision measures for a given scenario and known values of parameters (the current version applies to unlinked microsatellite data). This article describes key methods used in the program and provides its main features. The analysis of one simulated and one real dataset, both with complex evolutionary scenarios, illustrates the main possibilities of DIY ABC.
Subjects / Keywords
Statistique bayésienne; logiciel; simulation; statistique; génétique

Related items

Showing items related by title and author.

  • Thumbnail
    Estimation of demo-genetic model probabilities with Approximate Bayesian Computation using linear discriminant analysis on summary statistics. 
    Cornuet, Jean-Marie; Robert, Christian P.; Pudlo, Pierre; Guillemaud, Thomas; Marin, Jean-Michel; Lombaert, Eric; Estoup, Arnaud (2012) Article accepté pour publication ou publié
  • Thumbnail
    Adaptive approximate Bayesian computation 
    Robert, Christian P.; Marin, Jean-Michel; Cornuet, Jean-Marie; Beaumont, Mark A. (2009) Article accepté pour publication ou publié
  • Thumbnail
    In defence of model-based inference in phylogeography 
    Corander, Jukka; Panchal, Mahesh; Gaggiotti, Oscar; Hey, Jody; Estoup, Arnaud; Knowles, Lacey; Robert, Christian P.; Nielsen, Rasmus; Beaumont, Mark A.; Yang, Ziheng; Cornuet, Jean-Marie; Vitalis, Renaud; Foll, Matthieu; Huelsenbeck, John; Fagundes, Nelson; Sisson, Scott A.; Beerli, Peter; Chikhi, Lounès; Hickerson, Mike; Excoffier, Laurent; Balding, David; Rousset, François (2010) Article accepté pour publication ou publié
  • Thumbnail
    Reliable ABC model choice via random forests 
    Pudlo, Pierre; Marin, Jean-Michel; Estoup, Arnaud; Cornuet, Jean-Marie; Gautier, Mathieu; Robert, Christian P. (2016) Article accepté pour publication ou publié
  • Thumbnail
    Some discussions of D. Fearnhead and D. Prangle's Read Paper "Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation" 
    Singh, Sumeetpal S.; Sedki, Mohammed; Jasra, Ajay; Pudlo, Pierre; Robert, Christian P.; Lee, Anthony; Marin, Jean-Michel; Kosmidis, Ioannis; Girolami, Mark; Andrieu, Christophe; Cornebise, Julien; Doucet, Arnaud; Barthelme, Simon; Chopin, Nicolas (2012) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo