
Generalized incompressible flows, multi-marginal transport and Sinkhorn algorithm
Benamou, Jean-David; Carlier, Guillaume; Nenna, Luca (2019), Generalized incompressible flows, multi-marginal transport and Sinkhorn algorithm, Numerische Mathematik, 142, p. 33–54. 10.1007/s00211-018-0995-x
View/ Open
Type
Article accepté pour publication ou publiéDate
2019Journal name
Numerische MathematikVolume
142Publisher
Springer
Pages
33–54
Publication identifier
Metadata
Show full item recordAuthor(s)
Benamou, Jean-DavidCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Carlier, Guillaume
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Nenna, Luca
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
Starting from Brenier's relaxed formulation of the incompress-ible Euler equation in terms of geodesics in the group of measure-preserving diffeomorphisms, we propose a numerical method based on Sinkhorn's algorithm for the entropic regularization of optimal transport. We also make a detailed comparison of this entropic regular-ization with the so-called Bredinger entropic interpolation problem (see [1]). Numerical results in dimension one and two illustrate the feasibility of the method.Subjects / Keywords
Generalized incompressible flows; Incompressible Euler equations; Sinkhorn algorithm; Entropic regularization; Multi-marginal optimal transportRelated items
Showing items related by title and author.
-
Benamou, Jean-David; Carlier, Guillaume; Nenna, Luca (2017) Chapitre d'ouvrage
-
Benamou, Jean-David; Carlier, Guillaume; Cuturi, Marco; Nenna, Luca; Peyré, Gabriel (2015) Article accepté pour publication ou publié
-
Benamou, Jean-David; Carlier, Guillaume; Marino, Simone; Nenna, Luca (2019) Article accepté pour publication ou publié
-
Carlier, Guillaume (2022) Article accepté pour publication ou publié
-
Benamou, Jean-David; Carlier, Guillaume; Laborde, Maxime (2016) Article accepté pour publication ou publié