• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

SISTA : learning optimal transport costs under sparsity constraints

Carlier, Guillaume; Dupuy, Arnaud; Galichon, Alfred; Sun, Yifei (2021), SISTA : learning optimal transport costs under sparsity constraints. https://basepub.dauphine.psl.eu/handle/123456789/22611

View/Open
2009.08564.pdf (356.3Kb)
Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-03504045
Date
2021
Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Published in
Paris
Pages
21
Metadata
Show full item record
Author(s)
Carlier, Guillaume
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Dupuy, Arnaud
University of Luxembourg [Luxembourg]
Galichon, Alfred
Courant Institute of Mathematical Sciences [New York] [CIMS]
Sun, Yifei
Courant Institute of Mathematical Sciences [New York] [CIMS]
Abstract (EN)
In this paper, we describe a novel iterative procedure called SISTA to learn the underlying cost in optimal transport problems. SISTA is a hybrid between two classical methods, coordinate descent ("S"-inkhorn) and proximal gradient descent ("ISTA"). It alternates between a phase of exact minimization over the transport potentials and a phase of proximal gradient descent over the parameters of the transport cost. We prove that this method converges linearly, and we illustrate on simulated examples that it is significantly faster than both coordinate descent and ISTA. We apply it to estimating a model of migration, which predicts the flow of migrants using country-specific characteristics and pairwise measures of dissimilarity between countries. This application demonstrates the effectiveness of machine learning in quantitative social sciences.
Subjects / Keywords
Inverse optimal transport; Coordinate descent; ISTA

Related items

Showing items related by title and author.

  • Thumbnail
    From Knothe's transport to Brenier's map and a continuation method for optimal transport 
    Santambrogio, Filippo; Galichon, Alfred; Carlier, Guillaume (2010) Article accepté pour publication ou publié
  • Thumbnail
    Vector Quantile Regression: An optimal transport approach 
    Carlier, Guillaume; Chernozhukov, Victor; Galichon, Alfred (2016) Article accepté pour publication ou publié
  • Thumbnail
    Pareto efficiency for the concave order and multivariate comonotonicity 
    Carlier, Guillaume; Dana, Rose-Anne; Galichon, Alfred (2012) Article accepté pour publication ou publié
  • Thumbnail
    Exponential convergence for a convexifying equation 
    Galichon, Alfred; Carlier, Guillaume (2012) Article accepté pour publication ou publié
  • Thumbnail
    Vector quantile regression beyond the specified case 
    Carlier, Guillaume; Chernozhukov, Victor; Galichon, Alfred (2016-10) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo