
Adaptive sampling for active learning with genetic programming
Ben Hamida, Sana; Hmida, Hmida; Borgi, Amel; Rukoz, Marta (2019), Adaptive sampling for active learning with genetic programming, Cognitive Systems Research, 65, p. 23-39. 10.1016/j.cogsys.2020.08.008
View/ Open
Type
Article accepté pour publication ou publiéDate
2019Journal name
Cognitive Systems ResearchVolume
65Publisher
Elsevier
Pages
23-39
Publication identifier
Metadata
Show full item recordAuthor(s)
Ben Hamida, SanaLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Hmida, Hmida
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Borgi, Amel
Rukoz, Marta
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
Active learning is a machine learning paradigm allowing to decide which inputs to use for training. It is introduced to Genetic Programming (GP) essentially thanks to the dynamic data sampling, used to address some known issues such as the computational cost, the over-fitting problem and the imbalanced databases. The traditional dynamic sampling for GP gives to the algorithm a new sample periodically, often each generation, without considering the state of the evolution. In so doing, individuals do not have enough time to extract the hidden knowledge. An alternative approach is to use some information about the learning state to adapt the periodicity of the training data change. In this work, we propose an adaptive sampling strategy for classification tasks based on the state of solved fitness cases throughout learning. It is a flexible approach that could be applied with any dynamic sampling. We implemented some sampling algorithms extended with dynamic and adaptive controlling re-sampling frequency. We experimented them to solve the KDD intrusion detection and the Adult incomes prediction problems with GP. The experimental study demonstrates how the sampling frequency control preserves the power of dynamic sampling with possible improvements in learning time and quality. We also demonstrate that adaptive sampling can be an alternative to multi-level sampling. This work opens many new relevant extension paths.Subjects / Keywords
Genetic programming; Machine learning; Active learning; Training data sampling; Adaptive sampling; Sampling frequency controlRelated items
Showing items related by title and author.
-
Hmida, Hmida; Ben Hamida, Sana; Borgi, Amel; Rukoz, Marta (2019) Communication / Conférence
-
Hmida, Hmida; Ben Hamida, Sana; Borgi, Amel; Rukoz, Marta (2017) Communication / Conférence
-
Hmida, Hmida; Ben Hamida, Sana; Borgi, Amel; Rukoz, Marta (2018) Article accepté pour publication ou publié
-
Hmida, Hmida; Ben Hamida, Sana; Borgi, Amel; Rukoz, Marta (2019) Communication / Conférence
-
Hmida, Hmida; Ben Hamida, Sana; Borgi, Amel; Rukoz, Marta (2016) Communication / Conférence