• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Adaptive sampling for active learning with genetic programming

Ben Hamida, Sana; Hmida, Hmida; Borgi, Amel; Rukoz, Marta (2019), Adaptive sampling for active learning with genetic programming, Cognitive Systems Research, 65, p. 23-39. 10.1016/j.cogsys.2020.08.008

View/Open
Adaptive_BenHamida.pdf (2.632Mb)
Type
Article accepté pour publication ou publié
Date
2019
Journal name
Cognitive Systems Research
Volume
65
Publisher
Elsevier
Pages
23-39
Publication identifier
10.1016/j.cogsys.2020.08.008
Metadata
Show full item record
Author(s)
Ben Hamida, Sana
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Hmida, Hmida
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Borgi, Amel
Rukoz, Marta
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
Active learning is a machine learning paradigm allowing to decide which inputs to use for training. It is introduced to Genetic Programming (GP) essentially thanks to the dynamic data sampling, used to address some known issues such as the computational cost, the over-fitting problem and the imbalanced databases. The traditional dynamic sampling for GP gives to the algorithm a new sample periodically, often each generation, without considering the state of the evolution. In so doing, individuals do not have enough time to extract the hidden knowledge. An alternative approach is to use some information about the learning state to adapt the periodicity of the training data change. In this work, we propose an adaptive sampling strategy for classification tasks based on the state of solved fitness cases throughout learning. It is a flexible approach that could be applied with any dynamic sampling. We implemented some sampling algorithms extended with dynamic and adaptive controlling re-sampling frequency. We experimented them to solve the KDD intrusion detection and the Adult incomes prediction problems with GP. The experimental study demonstrates how the sampling frequency control preserves the power of dynamic sampling with possible improvements in learning time and quality. We also demonstrate that adaptive sampling can be an alternative to multi-level sampling. This work opens many new relevant extension paths.
Subjects / Keywords
Genetic programming; Machine learning; Active learning; Training data sampling; Adaptive sampling; Sampling frequency control

Related items

Showing items related by title and author.

  • Thumbnail
    A new adaptive sampling approach for Genetic Programming 
    Hmida, Hmida; Ben Hamida, Sana; Borgi, Amel; Rukoz, Marta (2019) Communication / Conférence
  • Thumbnail
    Sampling Methods in Genetic Programming Learners from Large Datasets: A Comparative Study 
    Hmida, Hmida; Ben Hamida, Sana; Borgi, Amel; Rukoz, Marta (2017) Communication / Conférence
  • Thumbnail
    Scale Genetic Programming for large Data Sets: Case of Higgs Bosons Classification 
    Hmida, Hmida; Ben Hamida, Sana; Borgi, Amel; Rukoz, Marta (2018) Article accepté pour publication ou publié
  • Thumbnail
    Genetic Programming over Spark for Higgs Boson Classification 
    Hmida, Hmida; Ben Hamida, Sana; Borgi, Amel; Rukoz, Marta (2019) Communication / Conférence
  • Thumbnail
    Hierarchical Data Topology Based Selection for Large Scale Learning 
    Hmida, Hmida; Ben Hamida, Sana; Borgi, Amel; Rukoz, Marta (2016) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo