
Worst-case Bounds for Spending a Common Budget
Cardi, Pierre; Gourvès, Laurent; Lesca, Julien (2021), Worst-case Bounds for Spending a Common Budget, in Endriss, Ulle; Nowé, Ann; Dignum, Frank; Lomuscio, Alessio, Proceedings of the 20th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2021), IFAAMAS, p. 288-296
View/ Open
Type
Communication / ConférenceDate
2021Conference title
20th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2021)Conference date
2021-05Book title
Proceedings of the 20th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2021)Book author
Endriss, Ulle; Nowé, Ann; Dignum, Frank; Lomuscio, AlessioPublisher
IFAAMAS
ISBN
978-1-4503-8307-3
Pages
288-296
Metadata
Show full item recordAuthor(s)
Cardi, PierreLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Gourvès, Laurent
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Lesca, Julien
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
We study the problem of spending a budget that is common to agents. Agents submit demands to a central planner who uses the budget to fund a subset of them. The utility of an agent is the part of the budget spent on her own accepted demands. In a fair solution, the successful demands of each agent would represent a 1/ fraction of the budget. However, this is rarely possible because every demand is indivisible, i.e. either accepted in its entirety or rejected. We are interested in worst-case bounds on the largest proportion of the budget that is dedicated to the least funded agent. Our approach is not to solve the corresponding max min problem for every instance, but to tackle the problem from a higher level. The size of the largest demand compared to the budget and the number of agents, are two parameters that significantly influence how much the worst-off agent gets. We propose worst-case bounds on the best utility of the least funded agent for the class of instances where the number of agents and the most expensive demand are fixed to given values. A characterization of this quantity is provided for 1 and 2 agents. For more than 2 agents, we propose lower and upper bounds that constitute a 14 15-approximation of the optimal value. Every existence result is complemented with a polynomial algorithm that builds a feasible solution satisfying our bounds.Subjects / Keywords
Fairness; Computational Social Choice; Worst Case AnalysisRelated items
Showing items related by title and author.
-
Faliszewski, Piotr; Gourvès, Laurent; Lang, Jérôme; Lesca, Julien; Monnot, Jérôme (2016) Communication / Conférence
-
Paschos, Vangelis; Della Croce, Federico (2008) Article accepté pour publication ou publié
-
Jaumard, Brigitte; Minoux, Michel (1986) Article accepté pour publication ou publié
-
Paschos, Vangelis; Della Croce, Federico; Escoffier, Bruno (2007) Article accepté pour publication ou publié
-
Della Croce, Federico; Escoffier, Bruno; Kaminski, Marcin; Paschos, Vangelis (2008) Chapitre d'ouvrage