
Isoradial immersions
Boutillier, Cédric; Cimasoni, David; de Tilière, Béatrice (2022), Isoradial immersions, Journal of Graph Theory, 99, 4, p. 715-757. 10.1002/jgt.22761
View/ Open
Type
Article accepté pour publication ou publiéDate
2022Journal name
Journal of Graph TheoryVolume
99Number
4Publisher
Wiley
Pages
715-757
Publication identifier
Metadata
Show full item recordAbstract (EN)
Isoradial embeddings of planar graphs play a crucial role in the study of several models of statistical mechanics, such as the Ising and dimer models. Kenyon and Schlenker give a combinatorial characterization of planar graphs admitting an isoradial embedding, and describe the space of such embeddings. In this paper we prove two results of the same type for generalizations of isoradial embeddings: isoradial immersions and minimal immersions. We show that a planar graph has a flat isoradial immersion if and only if its train-tracks do not form closed loops, and that a bipartite graph has a minimal immersion if and only if it is minimal. In both cases we describe the space of such immersions. We also give an application of our result to the bipartite dimer model defined on graphs admitting minimal immersions.Subjects / Keywords
isoradial graphs; dimers; planar graphs; graphes planaires; graphes isoradiaux; dimèresRelated items
Showing items related by title and author.
-
Boutillier, Cédric; Cimasoni, David; de Tilière, Béatrice (2022) Article accepté pour publication ou publié
-
Boutillier, Cédric; Cimasoni, David; de Tilière, Béatrice (2022) Document de travail / Working paper
-
Boutillier, Cédric; Cimasoni, David; de Tilière, Béatrice (2023) Article accepté pour publication ou publié
-
Affolter, Niklas; de Tilière, Béatrice; Melotti, Paul (2022) Document de travail / Working paper
-
Affolter, Niklas; de Tilière, Béatrice; Melotti, Paul (2022) Document de travail / Working paper