Show simple item record

dc.contributor.authorBoutillier, Cédric
dc.contributor.authorCimasoni, David
dc.contributor.authorde Tilière, Béatrice
dc.date.accessioned2022-02-18T14:20:13Z
dc.date.available2022-02-18T14:20:13Z
dc.date.issued2022
dc.identifier.issn0364-9024
dc.identifier.urihttps://basepub.dauphine.psl.eu/handle/123456789/22677
dc.language.isoenen
dc.subjectisoradial graphs
dc.subjectdimers
dc.subjectplanar graphs
dc.subjectgraphes planaires
dc.subjectgraphes isoradiaux
dc.subjectdimères
dc.subject.ddc515en
dc.titleIsoradial immersions
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenIsoradial embeddings of planar graphs play a crucial role in the study of several models of statistical mechanics, such as the Ising and dimer models. Kenyon and Schlenker give a combinatorial characterization of planar graphs admitting an isoradial embedding, and describe the space of such embeddings. In this paper we prove two results of the same type for generalizations of isoradial embeddings: isoradial immersions and minimal immersions. We show that a planar graph has a flat isoradial immersion if and only if its train-tracks do not form closed loops, and that a bipartite graph has a minimal immersion if and only if it is minimal. In both cases we describe the space of such immersions. We also give an application of our result to the bipartite dimer model defined on graphs admitting minimal immersions.
dc.relation.isversionofjnlnameJournal of Graph Theory
dc.relation.isversionofjnlvol99
dc.relation.isversionofjnlissue4
dc.relation.isversionofjnldate2022
dc.relation.isversionofjnlpages715-757
dc.relation.isversionofdoi10.1002/jgt.22761
dc.relation.isversionofjnlpublisherWiley
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen
dc.description.ssrncandidatenon
dc.description.halcandidatenon
dc.description.readershipnon-recherche
dc.description.audienceInternational
dc.relation.Isversionofjnlpeerreviewedoui
dc.date.updated2022-11-22T13:49:52Z


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record