
Minimal bipartite dimers and higher genus Harnack curves
Boutillier, Cédric; Cimasoni, David; de Tilière, Béatrice (2023), Minimal bipartite dimers and higher genus Harnack curves, Probability and Mathematical Physics, p. 58
View/ Open
Type
Article accepté pour publication ou publiéDate
2023Journal name
Probability and Mathematical PhysicsPublished in
Paris
Pages
58
Metadata
Show full item recordAuthor(s)
Boutillier, CédricLaboratoire de Probabilités, Statistique et Modélisation [LPSM (UMR_8001)]
Cimasoni, David
Section de mathématiques [Genève]
de Tilière, Béatrice
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
This paper completes the comprehensive study of the dimer model on infinite minimal graphs with Fock's weights [arXiv:1503.00289] initiated in [arXiv:2007.14699]: the latter article dealt with the elliptic case, i.e. models whose associated spectral curve is of genus one, while the present work applies to models of arbitrary genus. This provides a far-reaching extension of the genus zero results of [arXiv:math-ph/0202018, arXiv:math/0311062], from isoradial graphs with critical weights to minimal graphs with weights defining an arbitrary spectral data. For any minimal graph with Fock's weights, we give an explicit local expression for a two-parameter family of inverses of the associated Kasteleyn operator. In the periodic case, this allows us to give local formulas for all ergodic Gibbs measures, thus providing an alternative description of the measures constructed in [arXiv:math-ph/0311005]. We also give formulas for the corresponding slopes, an explicit parametrisation of the spectral curve, and build on [arXiv:math/0311062, arXiv:1107.5588] to establish a correspondence between Fock's models on periodic minimal graphs and Harnack curves.Subjects / Keywords
Riemann surfaces; M-curves; prime form; dimers; minimal graphsRelated items
Showing items related by title and author.
-
Boutillier, Cédric; Cimasoni, David; de Tilière, Béatrice (2022) Document de travail / Working paper
-
Boutillier, Cédric; Cimasoni, David; de Tilière, Béatrice (2022) Article accepté pour publication ou publié
-
Boutillier, Cédric; Cimasoni, David; de Tilière, Béatrice (2022) Article accepté pour publication ou publié
-
Bentz, Cédric; Costa, Marie-Christine; Ries, Bernard; de Werra, Dominique; Picouleau, Christophe; Zenklusen, Rico (2010) Article accepté pour publication ou publié
-
Bentz, Cédric; Costa, Marie-Christine; Picouleau, Christophe; Ries, Bernard; de Werra, Dominique (2012) Article accepté pour publication ou publié