
A characterization of necessary and possible interaction among more two criteria in a Choquet integral model
Kaldjob Kaldjob, Paul Alain; Mayag, Brice; Bouyssou, Denis (2021), A characterization of necessary and possible interaction among more two criteria in a Choquet integral model, Fuzzy Sets and Systems
Type
Article accepté pour publication ou publiéDate
2021Journal name
Fuzzy Sets and SystemsPublisher
Elsevier
Metadata
Show full item recordAbstract (FR)
Cet article étudie la notion d'interaction entre plus de deux critères dans un modèle d'intégrale de Choquet. Dans le cadre des alternatives binaires généralisées, nous donnons une condition nécessaire et suffisante pour qu'elles soient représentables par un modèle intégral général de Choquet.En utilisant cette condition, nous montrons qu'il est toujours possible de choisir parmi toutes ces représentations, celle pour laquelle tous les indices d'interaction sont strictement positifs.En supposant qu'il puisse y avoir une relation d'indifférence, nous donnons une condition suffisante sur l'information ordinale afin qu'une interaction positive soit toujours possible dans tous les sous-ensembles de critères. Hors du cadre des alternatives binaires, nous proposons un programme linéaire permettant de tester si l'interprétation des indices d'interaction est ambivalente ou non. Nous illustrons nos résultats par des exemples.Abstract (EN)
This paper studies the notion of interaction among more two criteria in a general Choquetintegral model. In the framework of generalized binary alternatives, we give a necessaryand sucient condition for them to be representable by a general Choquet integral model.Using this condition, we show that it is always possible to choose from all the numericalrepresentations, one for which all the Shapley interaction indices are strictly positive.Assuming that there is possibly to have an indierence relation, we give a sucientcondition on ordinal information so that positive interaction is always possible into allsubsets of criteria in general Choquet integral model. Outside the framework of binaryalternatives, we propose a linear program allowing to test whether the interpretation ofthe interaction indices is ambivalent or not. We illustrate our results with examples.Subjects / Keywords
Binary alternatives; Interaction index; General Choquet integral model; Shapley interaction indicesRelated items
Showing items related by title and author.
-
Kaldjob Kaldjob, Paul Alain; Mayag, Brice; Bouyssou, Denis (2020) Communication / Conférence
-
Kaldjob Kaldjob, Paul Alain; Mayag, Brice; Bouyssou, Denis (2021) Communication / Conférence
-
Mayag, Brice; Bouyssou, Denis (2020) Article accepté pour publication ou publié
-
Kaldjob Kaldjob, Paul Alain; Mayag, Brice; Bouyssou, Denis (2022) Document de travail / Working paper
-
Kaldjob Kaldjob, Paul Alain; Mayag, Brice; Bouyssou, Denis (2022) Communication / Conférence