• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Evolution of anisotropic diffusion in two-dimensional heterogeneous environments

Bouin, Emeric; Legendre, Guillaume; Lou, Yuan; Slover, Nichole (2021), Evolution of anisotropic diffusion in two-dimensional heterogeneous environments, Journal of Mathematical Biology, 82, 36. 10.1007/s00285-021-01579-1

View/Open
main_final.pdf (1.103Mb)
Type
Article accepté pour publication ou publié
External document link
https://hal.archives-ouvertes.fr/hal-02489905
Date
2021
Journal name
Journal of Mathematical Biology
Volume
82
Number
36
Publisher
Springer
Publication identifier
10.1007/s00285-021-01579-1
Metadata
Show full item record
Author(s)
Bouin, Emeric
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Legendre, Guillaume
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Lou, Yuan
Mathematics Department, The Ohio State University
Slover, Nichole
Mathematics Department, The Ohio State University
Abstract (EN)
We consider a system of two competing populations in two-dimensional heterogeneous environments. The populations are assumed to move horizontally and vertically with different probabilities, but are otherwise identical. We regard these probabilities as dispersal strategies. We show that the evolutionarily stable strategies are to move in one direction only. Our results predict that it is more beneficial for the species to choose the direction with smaller variation in the resource distribution. This finding seems to be in agreement with the classical results of Hasting [15] and Dockery et al. [11] for the evolution of slow dispersal, i.e. random diffusion is selected against in spatially heterogeneous environments. These conclusions also suggest that broader dispersal strategies should be considered regarding the movement in heterogeneous habitats.
Subjects / Keywords
anisotropic diffusion

Related items

Showing items related by title and author.

  • Thumbnail
    Sharp exponent of acceleration in general nonlocal equations with a weak Allee effect 
    Bouin, Emeric; Coville, Jérôme; Legendre, Guillaume (2021) Document de travail / Working paper
  • Thumbnail
    Evolution of a passive particle in a one-dimensional diffusive environment 
    Huveneers, François; Simenhaus, François (2023) Article accepté pour publication ou publié
  • Thumbnail
    On the uniqueness of the solution of the two-dimensional Navier–Stokes equation with a Dirac mass as initial vorticity 
    Gallagher, Isabelle; Gallay, Thierry; Lions, Pierre-Louis (2005) Article accepté pour publication ou publié
  • Thumbnail
    A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description 
    Caglioti, E.; Lions, Pierre-Louis; Marchioro, C.; Pulvirenti, M. (1992) Article accepté pour publication ou publié
  • Thumbnail
    A simple flattening lower bound for solutions to some linear integrodifferential equations 
    Coville, Jérôme; Bouin, Emeric; Legendre, Guillaume (2023) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo