Show simple item record

dc.contributor.authorAddala, Lanoir
hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorDolbeault, Jean
HAL ID: 87
ORCID: 0000-0003-4234-2298
hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorLi, Xingyu
dc.contributor.authorLazhar Tayeb, Mohamed
dc.date.accessioned2022-02-24T15:18:21Z
dc.date.available2022-02-24T15:18:21Z
dc.date.issued2021
dc.identifier.issn0022-4715
dc.identifier.urihttps://basepub.dauphine.psl.eu/handle/123456789/22746
dc.language.isoenen
dc.subjectdiffusion limiten
dc.subjectdrift-diffusion equationsen
dc.subjecthypocoercivityen
dc.subjectVlasov–Poisson-Fokker–Planck systemen
dc.subjectconvergence to equilibriumen
dc.subjectconfinementen
dc.subjectelectrostatic forcesen
dc.subjectPoisson couplingen
dc.subjectFokker-Planck operatoren
dc.subjectVlasov equationen
dc.subjectlarge-time behavioren
dc.subjectrate of convergenceen
dc.subject.ddc515en
dc.titleL2-Hypocoercivity and large time asymptotics of the linearized Vlasov-Poisson-Fokker-Planck systemen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenThis paper is devoted to the linearized Vlasov-Poisson-Fokker-Planck system in presence of an external potential of confinement. We investigate the large time behaviour of the solutions using hypocoercivity methods and a notion of scalar product adapted to the presence of a Poisson coupling. Our framework provides estimates which are uniform in the diffusion limit. As an application in a simple case, we study the one-dimensional case and prove the exponential convergence of the nonlinear Vlasov-Poisson-Fokker-Planck system without any small mass assumption.en
dc.relation.isversionofjnlnameJournal of Statistical Physics
dc.relation.isversionofjnlvol184en
dc.relation.isversionofjnldate2021-06
dc.relation.isversionofdoi10.1007/s10955-021-02784-4en
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen
dc.description.ssrncandidatenon
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewedouien
dc.date.updated2022-02-24T15:13:15Z
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record