
Convergence of a Piggyback-style method for the differentiation of solutions of standard saddle-point problems
Bogensperger, Lea; Chambolle, Antonin; Pock, Thomas (2022), Convergence of a Piggyback-style method for the differentiation of solutions of standard saddle-point problems, SIAM Journal on Mathematics of Data Science, 4, 3. 10.1137/21M1455887
View/ Open
Type
Article accepté pour publication ou publiéDate
2022Journal name
SIAM Journal on Mathematics of Data ScienceVolume
4Number
3Published in
Paris
Publication identifier
Metadata
Show full item recordAuthor(s)
Bogensperger, LeaInstitute for Computer Graphics and Vision [Graz] [ICG]
Chambolle, Antonin
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Pock, Thomas
Institute for Computer Graphics and Vision [Graz] [ICG]
Abstract (EN)
We analyse a "piggyback"-style method for computing the derivative of a loss which depends on the solution of a convex-concave saddle point problems, with respect to the bilinear term. We attempt to derive guarantees for the algorithm under minimal regularity assumption on the functions. Our final convergence results include possibly nonsmooth objectives. We illustrate the versatility of the proposed piggyback algorithm by learning optimized shearlet transforms, which are a class of popular sparsifying transforms in the field of imaging.Subjects / Keywords
First-order methods; saddle-point problems; differentiation; adjoint methods; piggyback algorithm; learningRelated items
Showing items related by title and author.
-
Chambolle, Antonin; Pock, Thomas (2021) Article accepté pour publication ou publié
-
Chambolle, Antonin; Pock, Thomas (2021) Chapitre d'ouvrage
-
Chambolle, Antonin; Duval, Vincent; Peyré, Gabriel; Poon, Clarice (2016) Article accepté pour publication ou publié
-
Chambolle, Antonin; Desjardins, Benoît; Esteban, Maria J.; Grandmont, Céline (2005) Article accepté pour publication ou publié
-
Chambolle, Antonin; Larsen, Christopher J. (2003) Article accepté pour publication ou publié