
Twin-width and polynomial kernels
Bonnet, Edouard; Kim, Eun Jung; Reinald, Amadeus; Thomassé, Stéphan; Watrigant, Rémi (2021), Twin-width and polynomial kernels, 16th International Symposium on Parameterized and Exact Computation, IPEC 2021, 2021-09, Lisbon, Portugal
View/ Open
Type
Communication / ConférenceDate
2021Conference title
16th International Symposium on Parameterized and Exact Computation, IPEC 2021Conference date
2021-09Conference city
LisbonConference country
PortugalBook author
Golovach, Petr A.; Zehavi, MeiravPublisher
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
ISBN
978-3-95977-216-7
Pages
6:1-6:13
Metadata
Show full item recordAuthor(s)
Bonnet, EdouardLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Kim, Eun Jung
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Reinald, Amadeus
Thomassé, Stéphan
Watrigant, Rémi
Abstract (EN)
We study the existence of polynomial kernels, for parameterized problems without a polynomial kernel on general graphs, when restricted to graphs of bounded twin-width. Our main result is that a polynomial kernel for k-Dominating Set on graphs of twin-width at most 4 would contradict a standard complexity-theoretic assumption. The reduction is quite involved, especially to get the twin-width upper bound down to 4, and can be tweaked to work for Connected k-Dominating Set and Total k-Dominating Set (albeit with a worse upper bound on the twin-width). The k-Independent Set problem admits the same lower bound by a much simpler argument, previously observed [ICALP '21], which extends to k-Independent Dominating Set, k-Path, k-Induced Path, k-Induced Matching, etc. On the positive side, we obtain a simple quadratic vertex kernel for Connected k-Vertex Cover and Capacitated k-Vertex Cover on graphs of bounded twin-width. Interestingly the kernel applies to graphs of Vapnik-Chervonenkis density 1, and does not require a witness sequence. We also present a more intricate O(k^1.5) vertex kernel for Connected k-Vertex Cover. Finally we show that deciding if a graph has twin-width at most 1 can be done in polynomial time, and observe that most optimization/decision graph problems can be solved in polynomial time on graphs of twin-width at most 1.Subjects / Keywords
Twin-width; kernelization; Dominating Set; lower boundsRelated items
Showing items related by title and author.
-
Bonnet, Edouard; Geniet, Colin; Kim, Eun Jung; Thomassé, Stéphan; Watrigant, Rémi (2021) Communication / Conférence
-
Bonnet, Edouard; Geniet, Colin; Kim, Eun Jung; Thomassé, Stéphan; Watrigant, Rémi (2021) Communication / Conférence
-
Bonnet, Edouard; Kim, Eun Jung; Thomassé, Stéphan; Watrigant, Rémi (2020) Communication / Conférence
-
Bonnet, Édouard; Kim, Eun Jung; Thomassé, Stéphan; Watrigant, Rémi (2021) Article accepté pour publication ou publié
-
Bonnet, Edouard; Chakraborty, Dibyayan; Kim, Eun Jung; Kohler, Noleen; Lopes, Raul; Thomassé, Stéphan (2023-01) Document de travail / Working paper