Show simple item record

dc.contributor.authorHanafi, Said
hal.structure.identifierLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
dc.contributor.authorMahjoub, Ali Ridha
dc.contributor.authorTaktak, Raouia
dc.contributor.authorWilbaut, Christophe
dc.date.accessioned2022-02-28T15:38:27Z
dc.date.available2022-02-28T15:38:27Z
dc.date.issued2021
dc.identifier.urihttps://basepub.dauphine.psl.eu/handle/123456789/22838
dc.descriptionTexte intégral disponible sur le site du Lamsade: voir la brochure du programme des JPOC12 p.26-27.en
dc.language.isoenen
dc.subjectmixed integer linear programmingen
dc.subjectcolor constraintsen
dc.subjectVariable-Sized Bin Packingen
dc.subject.ddc511en
dc.titleVariable-Sized Bin Packing Problem with Color Constraintsen
dc.typeCommunication / Conférence
dc.description.abstractenThe Variable-sized Bin Packing Problem with Color Constraints (VSBPP-CC) is a generalization of the classical one-dimensional Bin Packing Problem known to be NP-hard. The VSBPP-CC can be introduced with the following notations. Let N be a set of n items. Then, let C be a set of p colors such that each item i ∈ N is characterized by a weight ai and a color ci ∈ C. Finally, let B denotes the set of q possible used bins, 1 ≤ q ≤ n, and M = {b1, . . . , bk, . . . , bm} a set of m different available capacities to be assigned to the bins. The VSBPP-CC consists in assigning to each used bin from B a capacity from M. The objective is to minimize the residual capacity in the used bins such that : (i) each item is assigned to exactly one type of the bins, (ii) the total weights of items assigned to each bin does not exceed its capacity, and (iii) no more than two colors appear in each used bin. The latter condition may be seen as a maximum color capacity for each bin.en
dc.subject.ddclabelPrincipes généraux des mathématiquesen
dc.relation.conftitleJPOC 12 : Journées Polyèdres et Optimisation Combinatoireen
dc.relation.confdate2021-06
dc.relation.forthcomingnonen
dc.description.ssrncandidatenon
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewednonen
dc.date.updated2022-02-28T15:34:52Z
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record