
The Maximum Duo-Preservation String Mapping Problem with Bounded Alphabet
Boria, Nicolas; Gourvès, Laurent; Paschos, Vangelis; Monnot, Jérôme (2021), The Maximum Duo-Preservation String Mapping Problem with Bounded Alphabet, 21st International Workshop on Algorithms in Bioinformatics (WABI 2021), 2021-08
View/ Open
Type
Communication / ConférenceDate
2021Conference title
21st International Workshop on Algorithms in Bioinformatics (WABI 2021)Conference date
2021-08Book author
Carbone, Alessandra; El-Kebir, MohammedPublisher
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
ISBN
978-3-95977-200-6
Pages
5:1--5:12
Publication identifier
Metadata
Show full item recordAuthor(s)
Boria, NicolasLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Gourvès, Laurent
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Paschos, Vangelis
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Monnot, Jérôme
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
Given two strings A and B such that B is a permutation of A, the max duo-preservation string mapping (MPSM) problem asks to find a mapping π between them so as to preserve a maximum number of duos. A duo is any pair of consecutive characters in a string and it is preserved by π if its two consecutive characters in A are mapped to same two consecutive characters in B. This problem has received a growing attention in recent years, partly as an alternative way to produce approximation algorithms for its minimization counterpart, min common string partition, a widely studied problem due its applications in comparative genomics. Considering this favored field of application with short alphabet, it is surprising that MPSM ℓ , the variant of MPSM with bounded alphabet, has received so little attention, with a single yet impressive work that provides a 2.67-approximation achieved in O(n) [5], where n = |A| = |B|. Our work focuses on MPSM ℓ , and our main contribution is the demonstration that this problem admits a Polynomial Time Approximation Scheme (PTAS) when ℓ = O(1). We also provide an alternate, somewhat simpler, proof of NP-hardness for this problem compared with the NP-hardness proof presented in [16].Subjects / Keywords
Maximum-Duo Preservation String Mapping; Bounded alphabet; PolynomialTime Approximation SchemeRelated items
Showing items related by title and author.
-
Boria, Nicolas; Monnot, Jérôme; Paschos, Vangelis (2012) Communication / Conférence
-
Boria, Nicolas; Paschos, Vangelis; Monnot, Jérôme (2013) Article accepté pour publication ou publié
-
Monnot, Jérôme; Giannakos, A.; Gourvès, Laurent; Paschos, Vangelis (2007) Communication / Conférence
-
Giannakos, Aristotelis; Gourvès, Laurent; Monnot, Jérôme; Paschos, Vangelis (2007) Document de travail / Working paper
-
Boria, Nicolas; Monnot, Jérôme; Paschos, Vangelis (2013) Article accepté pour publication ou publié