• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Keller estimates of the eigenvalues in the gap of Dirac operators

Dolbeault, Jean; Gontier, David; Pizzichillo, Fabio; Van Den Bosch, Hanne (2022), Keller estimates of the eigenvalues in the gap of Dirac operators. https://basepub.dauphine.psl.eu/handle/123456789/23101

View/Open
DGPV.pdf (843.0Kb)
Type
Document de travail / Working paper
Date
2022
Series title
Cahiers du CEREMADE
Pages
35
Metadata
Show full item record
Author(s)
Dolbeault, Jean cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Gontier, David cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Pizzichillo, Fabio
Departamento de Matemática Aplicada y Ciencias de la Computación
Van Den Bosch, Hanne
Departamento de Ingeniería Matemática [Santiago] [DIM]
Center for Mathematical Modeling [CMM]
Abstract (EN)
We estimate the lowest eigenvalue in the gap of a Dirac operator with mass in terms of a Lebesgue norm of the potential. Such a bound is the counterpart for Dirac operators of the Keller estimates for the Schrödinger operator, which are equivalent to Gagliardo-Nirenberg-Sobolev interpolation inequalities. Domain, self-adjointness, optimality and critical values of the norms are addressed, while the optimal potential is given by a Dirac equation with a Kerr nonlinearity. A new critical bound appears, which is the smallest value of the norm of the potential for which eigenvalues may reach the bottom of the gap in the essential spectrum. Most of our result are established in the Birman-Schwinger reformulation of the problem.
Subjects / Keywords
Dirac operators; potential; spectral gap; eigenvalues; ground state; min-max principle; Birman-Schwinger operator; domain; self-adjoint operators; Keller estimate; interpolation; Gagliardo-Nirenberg-Sobolev inequality; Kerr nonlinearity

Related items

Showing items related by title and author.

  • Thumbnail
    Self-Adjointness of two dimensional Dirac operators on corner domains 
    Pizzichillo, Fabio; Bosch, Hanne Van Den (2021) Article accepté pour publication ou publié
  • Thumbnail
    General results on the eigenvalues of operators with gaps, arising from both ends of the gaps. Application to Dirac operators. 
    Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2006) Article accepté pour publication ou publié
  • Thumbnail
    On the Eigenvalues of Operators with Gaps. Application to Dirac Operators 
    Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2000) Article accepté pour publication ou publié
  • Thumbnail
    Corrigendum to: “On the eigenvalues of operators with gaps. Application to Dirac operators” [J. Funct. Anal. 174 (1) (2000) 208–226] 
    Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2023) Article accepté pour publication ou publié
  • Thumbnail
    Distinguished self-adjoint extension and eigenvalues of operators with gaps. Application to Dirac-Coulomb operators 
    Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2023) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo