Keller estimates of the eigenvalues in the gap of Dirac operators
hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Dolbeault, Jean
HAL ID: 87 ORCID: 0000-0003-4234-2298 | |
hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Gontier, David
HAL ID: 11393 ORCID: 0000-0001-8648-7910 | |
hal.structure.identifier | Departamento de Matemática Aplicada y Ciencias de la Computación | |
dc.contributor.author | Pizzichillo, Fabio | |
hal.structure.identifier | Departamento de Ingeniería Matemática [Santiago] [DIM] | |
hal.structure.identifier | Center for Mathematical Modeling [CMM] | |
dc.contributor.author | Van Den Bosch, Hanne | |
dc.date.accessioned | 2022-11-07T14:02:52Z | |
dc.date.available | 2022-11-07T14:02:52Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | https://basepub.dauphine.psl.eu/handle/123456789/23101 | |
dc.language.iso | en | en |
dc.subject | Dirac operators | en |
dc.subject | potential | en |
dc.subject | spectral gap | en |
dc.subject | eigenvalues | en |
dc.subject | ground state | en |
dc.subject | min-max principle | en |
dc.subject | Birman-Schwinger operator | en |
dc.subject | domain | en |
dc.subject | self-adjoint operators | en |
dc.subject | Keller estimate | en |
dc.subject | interpolation | en |
dc.subject | Gagliardo-Nirenberg-Sobolev inequality | en |
dc.subject | Kerr nonlinearity | en |
dc.subject.ddc | 515 | en |
dc.title | Keller estimates of the eigenvalues in the gap of Dirac operators | en |
dc.type | Document de travail / Working paper | |
dc.description.abstracten | We estimate the lowest eigenvalue in the gap of a Dirac operator with mass in terms of a Lebesgue norm of the potential. Such a bound is the counterpart for Dirac operators of the Keller estimates for the Schrödinger operator, which are equivalent to Gagliardo-Nirenberg-Sobolev interpolation inequalities. Domain, self-adjointness, optimality and critical values of the norms are addressed, while the optimal potential is given by a Dirac equation with a Kerr nonlinearity. A new critical bound appears, which is the smallest value of the norm of the potential for which eigenvalues may reach the bottom of the gap in the essential spectrum. Most of our result are established in the Birman-Schwinger reformulation of the problem. | en |
dc.identifier.citationpages | 35 | en |
dc.relation.ispartofseriestitle | Cahiers du CEREMADE | en |
dc.subject.ddclabel | Analyse | en |
dc.identifier.citationdate | 2022 | |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.date.updated | 2022-11-07T13:51:22Z | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut |