
Asymptotic of the Discrete Volume-Preserving Fractional Mean Curvature Flow via a Nonlocal Quantitative Alexandrov Theorem
De Gennaro, Danièle; Kubin, Andrea; Kubin, Anna (2023), Asymptotic of the Discrete Volume-Preserving Fractional Mean Curvature Flow via a Nonlocal Quantitative Alexandrov Theorem, Nonlinear Analysis, 228, p. 27. 10.1016/j.na.2022.113200
View/ Open
Type
Article accepté pour publication ou publiéDate
2023Journal name
Nonlinear AnalysisVolume
228Publisher
Elsevier
Published in
Paris
Pages
27
Publication identifier
Metadata
Show full item recordAuthor(s)
De Gennaro, DanièleCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Kubin, Andrea
Technische Universität München [TUM]
Kubin, Anna
Politecnico di Torino
Abstract (EN)
We characterize the long time behaviour of a discrete-in-time approximation of the volume preserving fractional mean curvature flow. In particular, we prove that the discrete flow starting from any bounded set of finite fractional perimeter converges exponentially fast to a single ball. As an intermediate result we establish a quantitative Alexandrov type estimate for normal deformations of a ball. Finally, we provide existence for flat flows as limit points of the discrete flow when the time discretization parameter tends to zero.Subjects / Keywords
Geometric evolutions; Fractional mean curvature; Alexandrov theorem; Minimizing movements; Variational methodsRelated items
Showing items related by title and author.
-
De Gennaro, Danièle; Kubin, Anna (2022) Document de travail / Working paper
-
Chambolle, Antonin; de Gennaro, Daniele; Morini, Massimiliano (2022) Document de travail / Working paper
-
Imbert, Cyril (2009) Article accepté pour publication ou publié
-
Chambolle, Antonin; Novaga, Matteo (2022) Article accepté pour publication ou publié
-
Natale, Andrea; Todeschi, Gabriele (2020) Communication / Conférence